login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066717 The continued fraction for the "binary" Champernowne constant. 4
0, 1, 6, 3, 1, 6, 5, 3, 3, 1, 6, 4, 1, 3, 298, 1, 6, 1, 1, 3, 285, 7, 2, 4, 1, 2, 1, 2, 1, 1, 4534532, 1, 4, 5, 1, 2, 1, 7, 1, 16, 1, 4, 1, 5, 5, 1, 5, 1, 4, 1, 2, 1, 5, 3, 2, 38, 2, 12, 1, 15, 2, 6, 3, 30, 4682854730443938, 1, 1, 68, 1, 6, 5, 4, 4, 1, 2, 1, 1, 1, 1, 2, 22, 1, 2, 7, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Robert G. Wilson v, Table of n, a(n) for n = 0..1000

J. K. Sikora, The first 98093504 CFE coefficients of the binary Champernowne Constant (231 MB zipped)

Eric E. Weisstein, Binary Champernowne Constant

MATHEMATICA

a = {}; Do[a = Append[a, IntegerDigits[n, 2]], {n, 1, 10^3} ]; ContinuedFraction[ N[ FromDigits[ {Flatten[a], 0}, 2], 500]]

almostNatural[n_, b_] :=  Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Take[ ContinuedFraction[ FromDigits[ {Array[almostNatural[#, 2] &, 20000], 0}, 2]], 100] (* Robert G. Wilson v, Jul 21 2014 *)

CROSSREFS

Cf. A030190, A066716, A033307.

Sequence in context: A019979 A085580 A092151 * A176395 A195494 A154969

Adjacent sequences:  A066714 A066715 A066716 * A066718 A066719 A066720

KEYWORD

base,cofr,nonn

AUTHOR

Robert G. Wilson v, Jan 14 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 00:38 EDT 2019. Contains 323528 sequences. (Running on oeis4.)