|
COMMENTS
| Comments from Markus Voege (Nov 24 2009) on the difference between this sequence and A038147: (Start)
The first term that differs is for n=6 and for all following terms the number of polyhexes is larger then the number of planar polyhexes.
If I recall correctly polyhexes are clusters of regular hexagons that are joined at the edges and are LOCALLY embeddable in the hexagonal lattice.
``Planar polyhexes'' are polyhexes that are GLOBALLY embeddable in the honeycomb lattice.
Example: (Planar) polyhex with 6 cells (x) and a hole (O):
.. x x
. x O x
.. x x
Polyhex with 6 cells that is cut open (I):
.. xIx
. x O x
.. x x
This polyhex is not globally embeddable in the honeycomb lattice, since adjacent cells of the lattice must be joined. But it can be embedded locally everywhere. It is a start of a spiral. For n>6 the spiral can be continued so that the cells overlap.
Illegal configuration with cut (I):
.. xIx
. x x x
.. x x
This configuration is NOT a polyhex since it the vertex at
.. xIx
... x
is not embeddable in the honeycomb lattice.
One has too keep in mind that these definitions are inspired by chemistry. Hence potential molecules are often the motivation for these definitions. Think of benzene rings that are fused at an C-C bond.
The (planar) polyhexes are ``free'' configurations in contrast to ``fixed'' configurations as in A001207 = Number of fixed hexagonal polyominoes with n cells.
A000228 (planar polyhexes) and A001207 (fixed polyominoes) differ only by the attribute free-fixed, that is whether the different orientations and reflections of an embedding in the lattice are counted.
This configuration
. x x .... x
.. x .... x x
is counted once as free and twice as fixed configurations.
Since most configurations have no symmetry, (A001207 / A000228) -> 12 for n -> oo. (End)
|
|
REFERENCES
| A. T. Balaban and F. Harary, Chemical graphs V: enumeration and proposed nomenclature of benzenoid cata-condensed polycyclic aromatic hydrocarbons, Tetrahedron 24 (1968), 2505-2516.
A. T. Balaban and Paul von R. Schleyer, "Graph theoretical enumeration of polymantanes", Tetrahedron, (1978), vol. 34, 3599-3609
M. Gardner, Polyhexes and Polyaboloes. Ch. 11 in Mathematical Magic Show. New York: Vintage, pp. 146-159, 1978.
M. Gardner, Tiling with Polyominoes, Polyiamonds and Polyhexes. Chap. 14 in Time Travel and Other Mathematical Bewilderments. New York: W. H. Freeman, pp. 175-187, 1988.
F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinb. Math. Soc. (2) 17 (1970), 1-13.
D. A. Klarner, Cell growth problems, Canad. J. Math., 19 (1967), 851-863.
J. V. Knop et al., On the total number of polyhexes, Match, No. 16 (1984), 119-134.
W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
N. Trinajstich, Z. Jerievi, J. V. Knop, W. R. Muller and K. Szymanski, COMPUTER GENERATION OF ISOMERIC STRUCTURES, Pure & Appl. Chem., Vol. 55, No. 2, pp. 379-39O, 1983.
Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9:3 (2005), 609-640.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|