login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097923
Expansion of (1+x^20)/((1-x)*(1-x^3)*(1-x^5)).
1
1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 21, 23, 24, 27, 29, 32, 35, 37, 40, 43, 47, 50, 53, 57, 60, 65, 69, 72, 77, 81, 86, 91, 95, 100, 105, 111, 116, 121, 127, 132, 139, 145, 150, 157, 163, 170, 177, 183, 190, 197, 205, 212, 219, 227, 234, 243, 251, 258
OFFSET
0,4
REFERENCES
G. van der Geer, Hilbert Modular Surfaces, Springer-Verlag, 1988; p. 191, Cor. 2.2.
LINKS
G. van der Geer, Hilbert Modular Surfaces, in: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, Band 16, Springer-Verlag (1988).
FORMULA
G.f.: (1+x^20)/((1-x)*(1-x^3)*(1-x^5)).
MATHEMATICA
CoefficientList[Series[(1 + x^20)/((1 - x)*(1 - x^3)*(1 - x^5)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Mar 30 2017 *)
LinearRecurrence[{1, 0, 1, -1, 1, -1, 0, -1, 1}, {1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 21}, 68] (* G. C. Greubel, Dec 20 2017; more initial terms by Georg Fischer, Apr 08 2019 *)
PROG
(PARI) x='x+O('x^30); Vec((1+x^20)/((1-x)*(1-x^3)*(1-x^5))) \\ G. C. Greubel, Dec 20 2017
(Magma) I:=[1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 21];
[n le 21 select I[n] else Self(n-1) + Self(n-3) - Self(n-4) + Self(n-5) - Self(n-6) - Self(n-8) + Self(n-9): n in [1..80]]; // G. C. Greubel, Dec 20 2017; more initial terms by Georg Fischer, Apr 03 2019
CROSSREFS
Sequence in context: A011885 A211524 A008672 * A027582 A259198 A011880
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 05 2004
STATUS
approved