Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Sep 08 2022 08:45:14
%S 1,1,1,2,2,3,4,4,5,6,7,8,9,10,11,13,14,15,17,18,21,23,24,27,29,32,35,
%T 37,40,43,47,50,53,57,60,65,69,72,77,81,86,91,95,100,105,111,116,121,
%U 127,132,139,145,150,157,163,170,177,183,190,197,205,212,219,227,234,243,251,258
%N Expansion of (1+x^20)/((1-x)*(1-x^3)*(1-x^5)).
%D G. van der Geer, Hilbert Modular Surfaces, Springer-Verlag, 1988; p. 191, Cor. 2.2.
%H G. C. Greubel, <a href="/A097923/b097923.txt">Table of n, a(n) for n = 0..1000</a>
%H G. van der Geer, <a href="https://doi.org/10.1007/978-3-642-61553-5">Hilbert Modular Surfaces</a>, in: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, Band 16, Springer-Verlag (1988).
%H <a href="/index/Mo#Molien">Index entries for Molien series</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1,1,-1,0,-1,1).
%F G.f.: (1+x^20)/((1-x)*(1-x^3)*(1-x^5)).
%t CoefficientList[Series[(1 + x^20)/((1 - x)*(1 - x^3)*(1 - x^5)), {x, 0, 100}], x] (* _Wesley Ivan Hurt_, Mar 30 2017 *)
%t LinearRecurrence[{1,0,1,-1,1,-1,0,-1,1},{1,1,1,2,2,3,4,4,5,6,7,8,9,10,11,13,14,15,17,18,21}, 68] (* _G. C. Greubel_, Dec 20 2017; more initial terms by _Georg Fischer_, Apr 08 2019 *)
%o (PARI) x='x+O('x^30); Vec((1+x^20)/((1-x)*(1-x^3)*(1-x^5))) \\ _G. C. Greubel_, Dec 20 2017
%o (Magma) I:=[1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 21];
%o [n le 21 select I[n] else Self(n-1) + Self(n-3) - Self(n-4) + Self(n-5) - Self(n-6) - Self(n-8) + Self(n-9): n in [1..80]]; // _G. C. Greubel_, Dec 20 2017; more initial terms by _Georg Fischer_, Apr 03 2019
%K nonn,easy
%O 0,4
%A _N. J. A. Sloane_, Sep 05 2004