login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006531
Semiorders on n elements.
(Formerly M3061)
12
1, 1, 3, 19, 183, 2371, 38703, 763099, 17648823, 468603091, 14050842303, 469643495179, 17315795469063, 698171064855811, 30561156525545103, 1443380517590979259, 73161586346500098903, 3961555049961803092531, 228225249142441259147103, 13938493569348563803135339
OFFSET
0,3
COMMENTS
Labeled semiorders on n elements: (1+3) and (2+2)-free posets. - Detlef Pauly (dettodet(AT)yahoo.de), Dec 27 2002
Labeled incomplete binary trees (every vertex has a left child, a right child, neither, or both) in which every vertex with a right child but no left child has a label greater than the label of its right child. - Ira M. Gessel, Nov 09 2013
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.30.
LINKS
J. L. Chandon, J. LeMaire and J. Pouget, Dénombrement des quasi-ordres sur un ensemble fini, Math. Sci. Humaines, No. 62 (1978), 61-80.
J. L. Chandon, J. LeMaire and J. Pouget, Enumeration of semiorders on a finite set, Preprint (English) of "Dénombrement des quasi-ordres sur un ensemble fini".
Julie Christophe, Jean-Paul Doignon and Samuel Fiorini, Counting Biorders, J. Integer Seqs., Vol. 6, 2003.
Yan X Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318 [math.CO], 2015.
FORMULA
E.g.f.: C(1-exp(-x)), where C(x) = (1 - sqrt(1 - 4*x)) / (2*x) is the ordinary g.f. for the Catalan numbers A000108. [corrected by Joel B. Lewis, Mar 29 2011]
a(n) = Sum_{k=1..n} S(n, k) * k! * M(k-1), S(n, k): Stirling number of the second kind, M(n): Motzkin number, A001006. - Detlef Pauly, Jun 06 2002
O.g.f.: Sum_{n>=1} (2*n)!/(n+1)! * x^n / Product_{k=0..n} (1+k*x). - Paul D. Hanna, Jul 20 2011
a(n) ~ n! * sqrt(3)*(log(4/3))^(1/2-n)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013
E.g.f.: 1/(1 + (exp(-x) - 1)/(1 + (exp(-x) - 1)/(1 + (exp(-x) - 1)/(1 + (exp(-x) - 1)/(1 + ...))))), a continued fraction. - Ilya Gutkovskiy, Nov 18 2017
From Peter Bala, Jan 15 2018: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n+k)*Catalan(k)*k!*Stirling2(n,k). Cf. A052895.
Conjecture: for fixed k = 1,2,..., the sequence a(n) (mod k) is eventually periodic with the exact period dividing phi(k), where phi(k) is Euler's totient function A000010. For example, modulo 10 the sequence becomes (1, 1, 3, 9, 3, 1, 3, 9, 3, ...) with an apparent period 1, 3, 9, 3 of length 4 = phi(10) beginning at a(1). (End)
Consider the transformation of a sequence u given by T(u)(m) = (-1)^m*Sum_{n=0..m} (u(n)/(n+1))*(Sum_{k=0..n}(-1)^k*binomial(n,k)*k^m). If u(n) = 1 then T(u)(n) = Bernoulli(n) (with Bernoulli(1) = 1/2), if u(n) = binomial(2*n,n) then T(u)(n) = a(n). - Peter Luschny, Jul 09 2020
MAPLE
A006531 := n->add(stirling2(n, k)*k!*A001006(k-1), k=1..n);
MATHEMATICA
m[n_] := m[n] = m[n-1] + Sum[ m[k]*m[n-k-2], {k, 0, n-2}]; m[0] = a[0] = 1; a[n_] := Sum[ StirlingS2[n, k]*k!*m[k-1], {k, 1, n}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 24 2012, after Maple *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, (2*m)!/(m+1)!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 20 2011 */
CROSSREFS
Cf. A000108 (unlabeled semiorders: Catalan numbers), A052895.
Sequence in context: A343685 A213533 A203133 * A326550 A352236 A362205
KEYWORD
nonn,nice,easy
STATUS
approved