login
A381281
Expansion of e.g.f. 1/(1 - x * cosh(3*x)).
3
1, 1, 2, 33, 240, 2145, 33120, 480753, 7878528, 158696577, 3384322560, 78934776129, 2053186983936, 57231998680545, 1714372871178240, 55323775198258065, 1899762412262031360, 69264871449203672577, 2677542944055160209408, 109197154520146527569505
OFFSET
0,3
COMMENTS
As stated in the comment of A185951, A185951(n,0) = 0^n.
FORMULA
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} 9^k * (2*k+1) * binomial(n,2*k+1) * a(n-2*k-1).
a(n) = Sum_{k=0..n} k! * 3^(n-k) * A185951(n,k).
PROG
(PARI) a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, k!*3^(n-k)*a185951(n, k));
CROSSREFS
Cf. A185951.
Sequence in context: A128152 A052403 A362538 * A006558 A228542 A002561
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Feb 18 2025
STATUS
approved