login
A380841
Array read by ascending antidiagonals: A(n,k) = n! * [x^n] 1/(1 - x*exp(x))^k.
2
1, 0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 21, 10, 3, 1, 0, 148, 66, 18, 4, 1, 0, 1305, 560, 141, 28, 5, 1, 0, 13806, 5770, 1380, 252, 40, 6, 1, 0, 170401, 69852, 16095, 2776, 405, 54, 7, 1, 0, 2403640, 970886, 217458, 35940, 4940, 606, 70, 8, 1, 0, 38143377, 15228880, 3335745, 533304, 70045, 8088, 861, 88, 9, 1
OFFSET
0,8
FORMULA
A(n,k) = n! * Sum_{j=0..n} j^(n-j) * binomial(j+k-1,j)/(n-j)!. - Seiichi Manyama, Feb 06 2025
EXAMPLE
Array begins as:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 4, 10, 18, 28, 40, 54, ...
0, 21, 66, 141, 252, 405, 606, ...
0, 148, 560, 1380, 2776, 4940, 8088, ...
0, 1305, 5770, 16095, 35940, 70045, 124350, ...
...
MATHEMATICA
A[n_, k_]:=n!SeriesCoefficient[1/(1-x*Exp[x])^k, {x, 0, n}]; Table[A[n-k, k], {n, 0, 10}, {k, 0, n}]//Flatten
CROSSREFS
Cf. A380843 (antidiagonal sums).
Columns k=0..4 give A000007, A006153, A377529, A377530, A379993.
Rows n=0..2 give A000012, A001477, A028552.
Main diagonal gives A380842.
A(n,n+1) gives A213643(n+1).
Sequence in context: A357586 A266861 A265435 * A277004 A371077 A113092
KEYWORD
nonn,tabl,new
AUTHOR
Stefano Spezia, Feb 05 2025
STATUS
approved