login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A380354
a(n) = phi(2 + phi(3 + phi(5 + ... + phi(prime(n))))), where phi is Euler totient function (A000010).
0
1, 2, 4, 6, 4, 8, 8, 12, 12, 16, 20, 20, 18, 40, 40, 16, 18, 18, 16, 72, 40, 16, 40, 18, 96, 96, 18, 64, 20, 40, 20, 48, 42, 40, 42, 20, 20, 40, 40, 20, 18, 20, 64, 64, 20, 40, 40, 40, 40, 20, 40, 20, 18, 64, 64, 40, 40, 20, 40, 20, 40, 64, 20, 40, 40, 20, 20, 64, 64, 64
OFFSET
1,2
COMMENTS
Inspired by A380340, A380341 and A380342.
Conjecture 1: a(n) can be only 1, 2, 4, 6, 8, 12, 16, 20, 18, 40, 72, 96, 64, 48 or 42.
Conjecture 2: for n >= 187, a(n) can be only 20 or 64.
MATHEMATICA
A380354[n_] := Fold[EulerPhi[#2 + #] &, 0, Prime[Range[n, 1, -1]]];
Array[A380354, 100]
PROG
(PARI) a(n) = my(x=0); forstep(k=n, 1, -1, x = eulerphi(prime(k)+x)); x; \\ Michel Marcus, Jan 22 2025
(Python)
from functools import reduce
from sympy import totient, primerange
def A380354(n): return totient(reduce(lambda x, y:totient(x)+y, tuple(reversed(tuple(primerange(prime(n)+1)))))) # Chai Wah Wu, Jan 23 2025
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Paolo Xausa, Jan 22 2025
STATUS
approved