OFFSET
0,4
COMMENTS
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of triangle, flattened).
FORMULA
T(n, k) = (-1)^(n - k) * ff(n, n) * rf(n, n) * M^(-1)(ff(n, k) * rf(n, k)) where ff denotes the falling factorial, rf the rising factorial and M^(-1)(t(n, k)) the matrix inverse to the matrix with entries t(n, k).
T(n, k) = binomial(2*n, n - k) for 0 < k < n. T(n, n) = 1; T(n, 0) = (-1)^n*binomial(-n, n).
Sum_{k=0..n} T(n, k)*cos(k*x) = 2^(n-1)*(cos(x)+1)^n. (After Philippe Deléham in A008311).
EXAMPLE
Triangle starts:
[0] [ 1]
[1] [ 1, 1]
[2] [ 3, 4, 1]
[3] [ 10, 15, 6, 1]
[4] [ 35, 56, 28, 8, 1]
[5] [ 126, 210, 120, 45, 10, 1]
[6] [ 462, 792, 495, 220, 66, 12, 1]
[7] [ 1716, 3003, 2002, 1001, 364, 91, 14, 1]
[8] [ 6435, 11440, 8008, 4368, 1820, 560, 120, 16, 1]
[9] [24310, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1]
.
Row 3 of the matrix inverse of the central factorials is [-1/36, 1/24, -1/60, 1/360]. Normalized with (-1)^(n-k)*360 gives row 3 of T.
MAPLE
T := (n, k) -> if n = k then 1 elif k = 0 then binomial(2*n, n - k)/2 else binomial(2*n, n - k) fi: seq(seq(T(n, k), k = 0..n), n = 0..9);
MATHEMATICA
A380113[n_, k_] := Binomial[2*n, n - k]/(Boole[k == 0 && n > 0] + 1);
Table[A380113[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2025 *)
PROG
(SageMath)
def Trow(n):
def cf(n, k): return falling_factorial(n, k)*rising_factorial(n, k)
def w(n): return factorial(n)*rising_factorial(n, n)
m = matrix(QQ, n + 1, lambda x, y: cf(x, y)).inverse()
return [(-1)^(n-k)*w(n)*m[n, k] for k in range(n+1)]
for n in range(10): print(Trow(n))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 12 2025
STATUS
approved