login
A380119
Triangle read by rows: T(n, k) is the number of walks of length 2*n on the N X N grid with unit steps in all four directions (NSWE) starting at (0, 0). k is the common value of the x- and the y-coordinate of the endpoint of the walk.
1
1, 2, 2, 10, 16, 6, 70, 140, 90, 20, 588, 1344, 1134, 448, 70, 5544, 13860, 13860, 7392, 2100, 252, 56628, 151008, 169884, 109824, 42900, 9504, 924, 613470, 1717716, 2108106, 1561560, 750750, 231660, 42042, 3432, 6952660, 20225920, 26546520, 21781760, 12155000, 4667520, 1191190, 183040, 12870
OFFSET
0,2
LINKS
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008.
Richard K. Guy, Christian Krattenthaler and Bruce E. Sagan, Lattice paths, reflections, & dimension-changing bijections, Ars Combin. 34 (1992), 3-15.
EXAMPLE
The triangle starts:
[0] [ 1]
[1] [ 2, 2]
[2] [ 10, 16, 6]
[3] [ 70, 140, 90, 20]
[4] [ 588, 1344, 1134, 448, 70]
[5] [ 5544, 13860, 13860, 7392, 2100, 252]
[6] [ 56628, 151008, 169884, 109824, 42900, 9504, 924]
[7] [ 613470, 1717716, 2108106, 1561560, 750750, 231660, 42042, 3432]
[8] [6952660, 20225920, 26546520, 21781760, 12155000, 4667520, 1191190, 183040, 12870]
.
For n = 2 the walks depending on the x-coordinate of the endpoint are:
W(x=0) = {NNSS,NSNS,NSWE,NWSE,NWES,WNSE,WNES,WWEE,WENS,WEWE},
W(x=1) = {NNSW,NNWS,NSNW,NSWN,NWNS,NWSN,NWWE,NWEW,WNNS,WNSN,WNWE,WNEW,WWNE,WWEN,WENW,WEWN},
W(x=2) = {NNWW,NWNW,NWWN,WNNW,WNWN,WWNN}.
PROG
(Python)
from dataclasses import dataclass
@dataclass
class Walk: s: str = ""; x: int = 0; y: int = 0
def Trow(n: int) -> list[int]:
W = [Walk()]
row = [0] * (n + 1)
for w in W:
if len(w.s) == 2*n:
if w.x == w.y: row[w.y] += 1
else:
for s in "NSWE":
x = y = 0
match s:
case "W": x = 1
case "E": x = -1
case "N": y = 1
case "S": y = -1
case _ : pass
if (w.y + y >= 0) and (w.x + x >= 0):
W.append(Walk(w.s + s, w.x + x, w.y + y))
return row
for n in range(6): print(Trow(n))
CROSSREFS
Related triangles: A380120.
Cf. A005568 (column 0), A000984 (main diagonal), A253487 (sub diagonal), A151403 (row sums).
Sequence in context: A307538 A316200 A360636 * A362745 A179789 A334396
KEYWORD
nonn,tabl,walk
AUTHOR
Peter Luschny, Jan 19 2025
STATUS
approved