login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A380041
E.g.f. A(x) satisfies A(x) = 1/( 1 - 3*x*exp(x*A(x)^2) )^(1/3).
0
1, 1, 6, 67, 1124, 25325, 718606, 24629395, 990296504, 45718478137, 2383877762810, 138578689119431, 8887132981365508, 623319005140469989, 47465740413056117894, 3900149351529967753435, 343951717449176947732976, 32405206661688405897284849, 3248370338004030319683766642
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..n} 3^k * k^(n-k) * binomial(2*n/3+k/3+1/3,k)/( (2*n+k+1)*(n-k)! ).
PROG
(PARI) a(n) = n!*sum(k=0, n, 3^k*k^(n-k)*binomial(2*n/3+k/3+1/3, k)/((2*n+k+1)*(n-k)!));
CROSSREFS
Sequence in context: A354320 A230342 A239301 * A121958 A177555 A054746
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Jan 10 2025
STATUS
approved