login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A380040
E.g.f. A(x) satisfies A(x) = 1/( 1 - 3*x*exp(x*A(x)) )^(2/3).
0
1, 2, 14, 170, 3000, 69930, 2033212, 70972734, 2894590064, 135164076722, 7113787010100, 416759006663142, 26903080612468744, 1897553477118350922, 145204649027247413996, 11982094054396851014030, 1060673494236770414806752, 100265097180082772515691874, 10080871201186661027182272868
OFFSET
0,2
FORMULA
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A380041.
a(n) = 2 * n! * Sum_{k=0..n} 3^k * k^(n-k) * binomial(2*n/3+k/3+2/3,k)/( (2*n+k+2)*(n-k)! ).
PROG
(PARI) a(n) = 2*n!*sum(k=0, n, 3^k*k^(n-k)*binomial(2*n/3+k/3+2/3, k)/((2*n+k+2)*(n-k)!));
CROSSREFS
Sequence in context: A141012 A351277 A235369 * A351274 A228476 A308449
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Jan 10 2025
STATUS
approved