login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A379990
Expansion of e.g.f. exp(-2*x)/(exp(-x) - x)^3.
1
1, 4, 25, 205, 2065, 24601, 337837, 5249581, 91006657, 1740663937, 36402220141, 826159146253, 20220201899377, 530828186303377, 14878044338021677, 443397290411503021, 14000282854007503105, 466866129420834410881, 16395362179348570608205, 604794784980600986425645
OFFSET
0,2
FORMULA
a(n) = n! * Sum_{k=0..n} (k+1)^(n-k) * binomial(k+2,2)/(n-k)!.
a(n) ~ n! * n^2 / (2 * (LambertW(1) + 1)^3 * LambertW(1)^(n+1)). - Vaclav Kotesovec, Jan 08 2025
PROG
(PARI) a(n) = n!*sum(k=0, n, (k+1)^(n-k)*binomial(k+2, 2)/(n-k)!);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jan 07 2025
STATUS
approved