OFFSET
1,2
COMMENTS
For all n, a(n) < n^2, as for k^3 + n^3 to divide k^3 * n^3, it must also divide n^3 * (k^3 + n^3) - k^3*n^3 = n^6, so k^3 <= n^6 - n^3, and in particular k < n^2. - Robert Israel, Jan 16 2025
Not every a(n) is a multiple of n: a(231) = 616 is the first case where n does not divide a(n).
First odd terms are a(1474) = 6633, a(1628) = 2849 and a(1860) = 5115.
For all odd n, a(n) is even.
If n = p^j where p is a prime >= 5, then a(n) = 0 (see link for proof). - Robert Israel, Jan 16 2025
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
MAPLE
f:= proc(n) local k;
for k from n^2 by -1 do
if (n*k)^3 mod (n^3 + k^3) = 0 then return k fi
od
end proc:
map(f, [$1..100]); # Robert Israel, Jan 16 2025
MATHEMATICA
A379953[n_] := Module[{k = n^2}, While[PowerMod[--k*n, 3, # + k^3] > 0] & [n^3]; k];
Array[A379953, 100] (* Paolo Xausa, Jan 19 2025 *)
PROG
(PARI) A379953(n) = forstep(k=n^2, 0, -1, if(!(((n*k)^3)%(k^3+n^3)), return(k)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 16 2025
STATUS
approved