If $n = p^j$ where p is a prime ≥ 5 , then A379953(n) = 0

Robert Israel

January 16, 2025

Suppose $n = p^j$ where p is prime, and $n^3 + k^3 | (nk)^3$ with k > 0. Then $n^3 + k^3 | n^6$ also. But the only divisors of n^6 are powers of p, so $n^3 + k^3$ is a power of p, i.e. $p^{3j} + k^3 = p^m$ for some $m \ge 3j$. Now $k^3 = p^m - p^{3j}$, the right side is divisible by p^{3j} , so k is divisible by p^j , say $k = rp^j$. Dividing by p^{3j} , we have

$$r^3 = p^{m-3j} - 1$$

We know $m \ge 3j$. We can't have m = 3j, as that would make r = 0. If m = 3j+1, then $p = r^3 + 1$. But $r^3 + 1 = (r+1)(r^2 - r + 1)$ is prime only when r = 1 (which corresponds to p = 2. For m > 3j + 1, Mihăilescu's theorem says the only solution of $r^3 = p^{m-3j} - 1$ in positive integers is r = 2. p = 3, m - 3j = 2. So if $p \ge 5$, it is impossible to have k > 0, and thus A379953(n) = 0.