login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379940
E.g.f. A(x) satisfies A(x) = 1/( exp(-x*A(x)^(2/3)) - x*A(x)^(1/3) )^3.
0
1, 6, 81, 1788, 55785, 2267298, 114015825, 6848257272, 478929874257, 38253577287870, 3437561332041969, 343381977748134900, 37755068758105209849, 4531920849132497127258, 589779214651388664049905, 82722149483353129407482352, 12440903535778778244423710625, 1997259670949248788135594940278
OFFSET
0,2
FORMULA
E.g.f.: B(x)^3, where B(x) is the e.g.f. of A377892.
a(n) = 3 * n! * Sum_{k=0..n} (2*n+3)^(k-1) * binomial(2*n+3,n-k)/k!.
a(n) == 0 (mod 3) for n>0.
PROG
(PARI) a(n) = 3*n!*sum(k=0, n, (2*n+3)^(k-1)*binomial(2*n+3, n-k)/k!);
CROSSREFS
Sequence in context: A349505 A052756 A349651 * A193265 A317277 A138457
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Jan 07 2025
STATUS
approved