login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379907
Triangle read by rows: T(n, k) = Sum_{i=0..n-k} (-1)^(n - k - i) * binomial(n - k, i) * binomial(k + 2*i, i) * (k + 1) / (k + 1 + i).
2
1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 3, 1, 6, 9, 9, 7, 4, 1, 15, 21, 21, 17, 11, 5, 1, 36, 51, 51, 42, 29, 16, 6, 1, 91, 127, 127, 106, 76, 46, 22, 7, 1, 232, 323, 323, 272, 200, 128, 69, 29, 8, 1, 603, 835, 835, 708, 530, 352, 204, 99, 37, 9, 1, 1585, 2188, 2188, 1865, 1415, 965, 587, 311, 137, 46, 10, 1
OFFSET
0,8
COMMENTS
Conjecture: Let A = (g(t), f(t)) and B = (u(t), v(t)) be (triangular) Riordan arrays with A(n, k) = [t^n](g(t)*(f(t))^k) and B(n, k) = [t^n](u(t)*(v(t))^k). Then T = (g(t)*u(f(t)), v(f(t))*t/f(t)) is the Riordan array with T(n, k) = [t^n](g(t)*u(f(t))*(v(f(t))*t/f(t))^k) = Sum_{i=0..n-k} A(n-k, i) * B(k+i, k) for 0 <= k <= n.
FORMULA
Riordan array (C(t/(1+t)) / (1+t), t * C(t/(1+t))) where C(x) is g.f. of A000108.
Riordan array ((1 + t - sqrt(1 - 2*t - 3*t^2))/(2*t*(1 + t)), (1 + t - sqrt(1-2*t-3*t^2))/2).
G.f.: 2/(sqrt((1 - 3*t)*(t + 1)) - 2*(t + 1)*t*x + t + 1).
Conjecture: T(n, k) = T(n, k-1) + T(n-1, k-1) - T(n-1, k-2) - T(n-2, k-2) for 2 <= k <= n.
T(n, k) = (-1)^(k-n)*hypergeom([k-n, k/2+1, (k+1)/2], [1, k + 2], 4). - Peter Luschny, Jan 06 2025
EXAMPLE
Triangle T(n, k) for 0 <= k <= n starts:
n \k : 0 1 2 3 4 5 6 7 8 9 10 11
====================================================================
0 : 1
1 : 0 1
2 : 1 1 1
3 : 1 2 2 1
4 : 3 4 4 3 1
5 : 6 9 9 7 4 1
6 : 15 21 21 17 11 5 1
7 : 36 51 51 42 29 16 6 1
8 : 91 127 127 106 76 46 22 7 1
9 : 232 323 323 272 200 128 69 29 8 1
10 : 603 835 835 708 530 352 204 99 37 9 1
11 : 1585 2188 2188 1865 1415 965 587 311 137 46 10 1
etc.
MAPLE
gf := 2/(sqrt((1-3*t)*(t+1)) - 2*(t+1)*t*x + t+1): ser := simplify(series(gf, t, 12)):
ct := n -> coeff(ser, t, n): row := n -> local k; seq(coeff(ct(n), x, k), k = 0..n):
seq(row(n), n = 0..11); # Peter Luschny, Jan 05 2025
PROG
(PARI) T(n, k) = sum(i=0, n-k, (-1)^(n-k-i)*binomial(n-k, i)*binomial(k+2*i, i)*(k+1)/(k+1+i))
(PARI) T(n, k)=polcoef(polcoef(2/(sqrt((1-3*t)*(1+t))+(1+t)*(1-2*x*t))+x*O(x^k), k, x)+t*O(t^n), n, t);
m=matrix(15, 15, n, k, if(k>n, 0, T(n-1, k-1)))
CROSSREFS
Cf. A005043 (column 0), A001006 (column 1 and 2), A102071 (column 3).
Cf. A000108, A342912 (row sums), A379824 (alternating row sums), A379823 (central terms).
Sequence in context: A368604 A246425 A286468 * A102563 A121496 A276325
KEYWORD
nonn,easy,tabl,new
AUTHOR
Werner Schulte, Jan 05 2025
STATUS
approved