login
A379892
Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a pentagonal hexecontahedron.
8
2, 6, 7, 3, 4, 7, 3, 2, 2, 7, 1, 7, 6, 7, 8, 4, 6, 6, 8, 2, 7, 9, 0, 7, 0, 3, 3, 4, 8, 9, 5, 7, 9, 1, 7, 1, 9, 7, 8, 7, 0, 3, 1, 7, 5, 0, 2, 6, 9, 3, 4, 4, 5, 6, 5, 7, 6, 9, 9, 5, 2, 4, 5, 0, 0, 2, 2, 5, 5, 7, 4, 0, 0, 5, 4, 0, 2, 1, 6, 0, 5, 9, 9, 6, 7, 4, 7, 4, 7, 5
OFFSET
1,1
COMMENTS
The pentagonal hexecontahedron is the dual polyhedron of the snub dodecahedron.
FORMULA
Equals arccos(A377849/(A377849 - 2)).
Equals arccos(c), where c is the smallest real root of 209*x^6 - 94*x^5 - 137*x^4 + 100*x^3 - 9*x^2 - 6*x + 1.
EXAMPLE
2.6734732271767846682790703348957917197870317502693...
MATHEMATICA
First[RealDigits[ArcCos[#/(# - 2)] & [Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1]], 10, 100]] (* or *)
First[RealDigits[First[PolyhedronData["PentagonalHexecontahedron", "DihedralAngles"]], 10, 100]]
PROG
(PARI) acos(polrootsreal(209*x^6 - 94*x^5 - 137*x^4 + 100*x^3 - 9*x^2 - 6*x + 1)[1]) \\ Charles R Greathouse IV, Feb 10 2025
CROSSREFS
Cf. A379888 (surface area), A379889 (volume), A379890 (inradius), A379891 (midradius).
Cf. A377997 and A377998 (dihedral angles of a snub dodecahedron).
Cf. A377849.
Sequence in context: A020771 A242113 A261804 * A021378 A329246 A201891
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Jan 10 2025
STATUS
approved