The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A329246 Decimal expansion of Sum_{k>=1} cos(k*Pi/4)/k. 1
 2, 6, 7, 3, 9, 9, 9, 9, 8, 3, 6, 9, 7, 8, 5, 1, 8, 5, 2, 6, 1, 9, 9, 6, 6, 3, 2, 1, 2, 5, 3, 5, 2, 0, 1, 2, 4, 9, 5, 2, 0, 5, 1, 3, 0, 5, 4, 0, 7, 5, 3, 8, 9, 1, 8, 4, 6, 4, 7, 7, 8, 0, 1, 9, 5, 3, 3, 4, 0, 1, 8, 6, 6, 1, 8, 5, 8, 9, 3, 6, 5, 0, 1, 5, 3, 8, 7, 6, 1, 4, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Sum_{k>=1} cos(k*x)/k = Re(Sum_{k>=1} exp(k*x*i)/k) = Re(-log(1-exp(x*i))) = -log(2*|sin(x/2)|), x != 2*m*Pi, where i is the imaginary unit. In general, for real s and complex z, let f(s,z) = Sum_{k>=1} z^k/k^s, then: (a) if s <= 0, then f(s,z) converges to Polylog(s,z) if |z| < 1; (b) if 0 < s <= 1, then f(s,z) converges to Polylog(s,z) if z != 1; (c) if s > 1, then f(s,z) converges to Polylog(s,z) if |z| <= 1. As a result, let z = e^(i*x), then the series Sum_{k>=1} (cos(k*x) + i*sin(k*x))/k^s converges to Polylog(s,e^(i*x)) if and only if s > 1, or 0 < s <= 1 and x != 2*m*Pi. LINKS Table of n, a(n) for n=0..90. FORMULA Equals log(1 + sqrt(2)/2)/2. EXAMPLE Sum_{k>=1} cos(k*Pi/4)/k = -log(2*|sin(Pi/8)|) = 0.2673999983... MATHEMATICA RealDigits[Log[1 + Sqrt[2]/2]/2, 10, 120][[1]] (* Amiram Eldar, May 31 2023 *) PROG (PARI) default(realprecision, 100); log(1 + sqrt(2)/2)/2 CROSSREFS Similar sequences: A263192 (Sum_{k>=1} cos(k)/sqrt(k) = Re(Polylog(1/2,exp(i)))); A263193 (Sum_{k>=1} sin(k)/sqrt(k) = Im(Polylog(1/2,exp(i)))); A329247 (Sum_{k>=1} cos(k*Pi/6)/k = Re(Polylog(1,exp(i*Pi/6)))); A121225 (Sum_{k>=1} cos(k)/k = Re(Polylog(1,exp(i)))); this sequence (Sum_{k>=1} cos(k*Pi/4)/k = Re(Polylog(1,exp(i*Pi/4)))); A096444 (Sum_{k>=1} sin(k)/k = Im(Polylog(1,exp(i)))); A122143 (Sum_{k>=1} cos(k)/k^2 = Re(Polylog(2,exp(i)))); A096418 (Sum_{k>=1} sin(k)/k^2 = Im(Polylog(2,exp(i)))). Sequence in context: A242113 A261804 A021378 * A201891 A198430 A065488 Adjacent sequences: A329243 A329244 A329245 * A329247 A329248 A329249 KEYWORD nonn,cons AUTHOR Jianing Song, Nov 09 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 09:52 EDT 2024. Contains 376008 sequences. (Running on oeis4.)