login
A379821
Array read by ascending antidiagonals: A(n, k) = (-1)^(n + k) * Sum_{j=0..k} (j!)^2 * Stirling1(n, j) * Stirling1(k, j).
0
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 5, 2, 0, 0, 6, 14, 14, 6, 0, 0, 24, 50, 76, 50, 24, 0, 0, 120, 224, 360, 360, 224, 120, 0, 0, 720, 1216, 1908, 2392, 1908, 1216, 720, 0, 0, 5040, 7776, 11628, 15664, 15664, 11628, 7776, 5040, 0
OFFSET
0,12
EXAMPLE
Array begins:
[0] 1, 0, 0, 0, 0, 0, 0, 0, ...
[1] 0, 1, 1, 2, 6, 24, 120, 720, ...
[2] 0, 1, 5, 14, 50, 224, 1216, 7776, ...
[3] 0, 2, 14, 76, 360, 1908, 11628, 81072, ...
[4] 0, 6, 50, 360, 2392, 15664, 110336, 856080, ...
[5] 0, 24, 224, 1908, 15664, 126676, 1046780, 9169920, ...
[6] 0, 120, 1216, 11628, 110336, 1046780, 10057204, 99846144, ...
.
Triangle T(n, k) = A(n - k, k) starts:
[0] 1;
[1] 0, 0;
[2] 0, 1, 0;
[3] 0, 1, 1, 0;
[4] 0, 2, 5, 2, 0;
[5] 0, 6, 14, 14, 6, 0;
[6] 0, 24, 50, 76, 50, 24, 0;
[7] 0, 120, 224, 360, 360, 224, 120, 0;
[8] 0, 720, 1216, 1908, 2392, 1908, 1216, 720, 0;
MAPLE
A := (n, k) -> local j; (-1)^(n + k)*add((j!)^2*Stirling1(n, j)*Stirling1(k, j), j = 0..k):
seq(lprint(seq(A(n, k), k = 0..7)), n = 0..8);
CROSSREFS
The corresponding array with Stirling2 numbers is A371761.
Sequence in context: A355676 A159985 A259667 * A321216 A193083 A146103
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 03 2025
STATUS
approved