OFFSET
1,1
LINKS
Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
FORMULA
a(n) = (A360573(n)-1)/2.
A023416(a(n)) = 3.
Let a = floor((24n)^(1/4))+3 if n>binomial(floor((24n)^(1/4))+2,4) and a = floor((24n)^(1/4))+2 otherwise. Let j = binomial(a,4)-n. Then a(n) = 2^a-1-2^(A360010(j+1)+1)-2^(A056557(j)+1)-2^(A333516(j+1)-1).
Sum_{n>=1} 1/a(n) = 1.3949930090659130972172214185888677947877214389482588641632435250211546702139813215203065255971026537... (calculated using Baillie's irwinSums.m, see Links). - Amiram Eldar, Dec 21 2024
MATHEMATICA
Select[Range[2^8], Count[IntegerDigits[#, 2], 0]==3&] (* James C. McMahon, Dec 20 2024 *)
PROG
(Python)
from math import comb, isqrt
from sympy import integer_nthroot
def A056557(n): return (k:=isqrt(r:=n+1-comb((m:=integer_nthroot(6*(n+1), 3)[0])-(n<comb(m+2, 3))+2, 3)<<1))-((r<<2)<=(k<<2)*(k+1)+1)
def A333516(n): return (r:=n-1-comb((m:=integer_nthroot(6*n, 3)[0])+(n>comb(m+2, 3))+1, 3))-comb((k:=isqrt(m:=r+1<<1))+(m>k*(k+1)), 2)+1
def A360010(n): return (m:=integer_nthroot(6*n, 3)[0])+(n>comb(m+2, 3))
def A379269(n):
a = (a2:=integer_nthroot(24*n, 4)[0])+(n>comb(a2+2, 4))+2
j = comb(a, 4)-n
return (1<<a)-(1<<b)-(1<<c)-(1<<d)-1
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Chai Wah Wu, Dec 19 2024
STATUS
approved