Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Dec 21 2024 11:09:29
%S 8,17,18,20,24,35,37,38,41,42,44,49,50,52,56,71,75,77,78,83,85,86,89,
%T 90,92,99,101,102,105,106,108,113,114,116,120,143,151,155,157,158,167,
%U 171,173,174,179,181,182,185,186,188,199,203,205,206,211,213,214,217
%N Numbers whose binary representation has exactly three zeros.
%H Robert Baillie and Thomas Schmelzer, <a href="https://library.wolfram.com/infocenter/MathSource/7166/">Summing Kempner's Curious (Slowly-Convergent) Series</a>, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
%F a(n) = (A360573(n)-1)/2.
%F A023416(a(n)) = 3.
%F Let a = floor((24n)^(1/4))+3 if n>binomial(floor((24n)^(1/4))+2,4) and a = floor((24n)^(1/4))+2 otherwise. Let j = binomial(a,4)-n. Then a(n) = 2^a-1-2^(A360010(j+1)+1)-2^(A056557(j)+1)-2^(A333516(j+1)-1).
%F Sum_{n>=1} 1/a(n) = 1.3949930090659130972172214185888677947877214389482588641632435250211546702139813215203065255971026537... (calculated using Baillie's irwinSums.m, see Links). - _Amiram Eldar_, Dec 21 2024
%t Select[Range[2^8],Count[IntegerDigits[#,2],0]==3&] (* _James C. McMahon_, Dec 20 2024 *)
%o (Python)
%o from math import comb, isqrt
%o from sympy import integer_nthroot
%o def A056557(n): return (k:=isqrt(r:=n+1-comb((m:=integer_nthroot(6*(n+1), 3)[0])-(n<comb(m+2, 3))+2, 3)<<1))-((r<<2)<=(k<<2)*(k+1)+1)
%o def A333516(n): return (r:=n-1-comb((m:=integer_nthroot(6*n, 3)[0])+(n>comb(m+2, 3))+1, 3))-comb((k:=isqrt(m:=r+1<<1))+(m>k*(k+1)), 2)+1
%o def A360010(n): return (m:=integer_nthroot(6*n, 3)[0])+(n>comb(m+2, 3))
%o def A379269(n):
%o a = (a2:=integer_nthroot(24*n, 4)[0])+(n>comb(a2+2, 4))+2
%o j = comb(a,4)-n
%o b, c, d = A360010(j+1)+1, A056557(j)+1, A333516(j+1)-1
%o return (1<<a)-(1<<b)-(1<<c)-(1<<d)-1
%Y Cf. A023416, A056557, A333516, A360010, A360573.
%K nonn,base,changed
%O 1,1
%A _Chai Wah Wu_, Dec 19 2024