login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A379217
Quotient (A003961(k)-sigma(k)) / (2*k-A003961(k)) computed for those k for which this quotient is an integer, where A003961 is fully multiplicative with a(prime(i)) = prime(i+1).
3
0, 0, 1, -2, -1, 1, -3, 18, 9, -1, 17, 3, 1, -35, -7, -15, 57, -1, 339, -381, 3, -7, -969, -1213, -1, 3, 3, -979, 419, 29, -42735, 21, 731232, 3, 1445, 2809731, -4566981, 557, -19691, -1, 5, 544371, 5, -475, -1784691, 9051, 176870849, 808683, 280791301, 1803, -891775, -3679, -3733533, -444406677, 731480523, 275091
OFFSET
1,4
COMMENTS
Terms in A378980 that correspond here with -1's are perfect numbers (A000396).
FORMULA
a(n) = A286385(A378980(n)) / A379216(n) = A286385(A378980(n)) / -A252748(A378980(n)).
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A378981(n) = ((A003961(n)-sigma(n))%((2*n)-A003961(n)));
is_A378980(n) = !A378981(n);
for(n=1, 2^25, if(is_A378980(n), print1(((A003961(n)-sigma(n))/((2*n)-A003961(n))), ", ")));
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Dec 20 2024
STATUS
approved