login
A378991
Dirichlet inverse of the Möbius transform of A005187, where A005187(n) = 2*n - (number of 1's in binary representation of n).
2
1, -2, -3, 0, -7, 8, -10, 0, -3, 20, -18, -4, -22, 28, 27, 0, -31, 6, -34, -12, 35, 52, -41, 0, 10, 64, 11, -16, -53, -104, -56, 0, 66, 92, 91, 4, -70, 100, 84, 0, -78, -132, -81, -32, 21, 120, -88, 0, 16, -66, 123, -40, -101, -56, 173, 0, 132, 156, -112, 124, -116, 164, 51, 0, 210, -256, -130, -60, 156, -364, -137
OFFSET
1,2
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A297111(n/d) * a(d).
a(n) = Sum_{d|n} A346237(d).
PROG
(PARI)
A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
A297111(n) = sumdiv(n, d, moebius(n/d)*A005187(d));
memoA378991 = Map();
A378991(n) = if(1==n, 1, my(v); if(mapisdefined(memoA378991, n, &v), v, v = -sumdiv(n, d, if(d<n, A297111(n/d)*A378991(d), 0)); mapput(memoA378991, n, v); (v)));
CROSSREFS
Dirichlet inverse of A297111.
Inverse Möbius transform of A346237.
Cf. A005187.
Cf. also A378989, A378990.
Sequence in context: A341339 A084257 A365803 * A185963 A059034 A171023
KEYWORD
sign
AUTHOR
Antti Karttunen, Dec 15 2024
STATUS
approved