login
A378989
Dirichlet inverse of the Möbius transform of binary weight of n.
3
1, 0, -1, 0, -1, 0, -2, 0, 1, 0, -2, 0, -2, 0, 1, 0, -1, 0, -2, 0, 5, 0, -3, 0, 0, 0, -3, 0, -3, 0, -4, 0, 6, 0, 5, 0, -2, 0, 4, 0, -2, 0, -3, 0, -1, 0, -4, 0, 4, 0, 1, 0, -3, 0, 3, 0, 4, 0, -4, 0, -4, 0, -11, 0, 6, 0, -2, 0, 8, 0, -3, 0, -2, 0, 2, 0, 9, 0, -4, 0, 6, 0, -3, 0, 1, 0, 6, 0, -3, 0, 8, 0, 9, 0, 2, 0, -2, 0, -12, 0, -3, 0, -4, 0, -12
OFFSET
1,7
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A297115(n/d) * a(d).
a(n) = Sum_{d|n} A378990(d).
PROG
(PARI)
A297115(n) = sumdiv(n, d, moebius(n/d)*hammingweight(d));
memoA378989 = Map();
A378989(n) = if(1==n, 1, my(v); if(mapisdefined(memoA378989, n, &v), v, v = -sumdiv(n, d, if(d<n, A297115(n/d)*A378989(d), 0)); mapput(memoA378989, n, v); (v)));
CROSSREFS
Dirichlet inverse of A297115.
Inverse Möbius transform of A378990.
Cf. A000120.
Sequence in context: A286351 A091394 A029881 * A347290 A070090 A230642
KEYWORD
sign
AUTHOR
Antti Karttunen, Dec 15 2024
STATUS
approved