login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A378920
G.f. A(x) satisfies A(x) = 1 + x*A(x)^6/(1 + x*A(x)^2).
4
1, 1, 5, 38, 339, 3308, 34191, 367844, 4076112, 46204209, 533239820, 6244542391, 74016115926, 886276231388, 10704869669941, 130271156244371, 1595708949486866, 19658780721376791, 243429900033986385, 3028086095940468087, 37821457123957529163, 474145963420441744445
OFFSET
0,3
FORMULA
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^5/(1 + x*A(x)^2)).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).
PROG
(PARI) a(n, r=1, s=-1, t=6, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 11 2024
STATUS
approved