login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378830
G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (1 + A(x)^(2*n+1))^(n+1).
1
1, 1, 4, 11, 42, 153, 610, 2459, 10252, 43409, 187057, 816018, 3600270, 16030706, 71959064, 325263050, 1479270802, 6764056992, 31078467690, 143411844050, 664352697921, 3088451702294, 14403683874057, 67371591912847, 315969606711112, 1485546933158293, 7000321009422438, 33057274408834760
OFFSET
1,3
COMMENTS
Related identity: Sum_{n=-oo..+oo} x^n*(1 - x^(2*n+1))^n = 0.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) 1/x = Sum_{n=-oo..+oo} A(x)^n * (1 + A(x)^(2*n+1))^(n+1).
(2) A(x) = x * Sum_{n=-oo..+oo} A(x)^(2*n^2) / (1 + A(x)^(2*n+1))^n.
(3) 0 = Sum_{n=-oo..+oo} (-1)^n * A(x)^n * (1 + A(x)^(2*n+1))^n.
(4) 0 = Sum_{n=-oo..+oo} (-1)^n * A(x)^(2*n*(n+1)) / (1 + A(x)^(2*n+1))^(n+1).
EXAMPLE
G.f.: A(x) = x + x^2 + 4*x^3 + 11*x^4 + 42*x^5 + 153*x^6 + 610*x^7 + 2459*x^8 + 10252*x^9 + 43409*x^10 + 187057*x^11 + 816018*x^12 + ...
RELATED SERIES.
P(x) = Sum_{n>=0} A(x)^n * (1 + A(x)^(2*n+1))^(n+1) = 1 + 2*x + 3*x^2 + 11*x^3 + 37*x^4 + 142*x^5 + 558*x^6 + 2279*x^7 + 9512*x^8 + 40490*x^9 + 174938*x^10 + 765476*x^11 + 3384754*x^12 + ...
Q(x) = Sum_{n>=0} A(x)^(2*n^2) / (1 + A(x)^(2*n+1))^n = 1 + x^2 + 2*x^3 + 9*x^4 + 29*x^5 + 117*x^6 + 448*x^7 + 1840*x^8 + 7587*x^9 + 32176*x^10 + 138061*x^11 + 601438*x^12 + ...
where 1/x = P(x) + Q(x)/A(x).
SPECIFIC VALUES.
The radius of convergence of A(x) is r = 0.20038502229069403084620325...
where A(r) = 0.4235821265247070959910742044905... is a relative maximum.
A(t) = 1/3 at t = 0.19298266815962402196002999560324674579680552969760...
where t = 1/Sum_{n=-oo..+oo} 3*(1/3 + 1/3^(2*n))^n.
A(t) = 1/4 at t = 0.17130301690449912394460704626585777982140255712239...
where t = 1/Sum_{n=-oo..+oo} 4*(1/4 + 1/4^(2*n))^n.
A(t) = 1/5 at t = 0.15033802491039176999109756769243883091099790716207...
where t = 1/Sum_{n=-oo..+oo} 5*(1/5 + 1/5^(2*n))^n.
A(1/5) = 0.40253057450577597376072876549180046708653413735166...
A(1/6) = 0.23753161877865991223985753270425915308397301411583...
A(1/7) = 0.18514087266912257977795325275140987102038951384383...
A(1/8) = 0.15359127433897786786958778886350143695575182881679...
A(1/10) = 0.1157765216505016369845861113674765481114936795655...
PROG
(PARI) {a(n) = my(V=[0, 1], A); for(i=1, n, V=concat(V, 0); A = Ser(V);
V[#V] = polcoef( sum(m=-#A, #A, A^m*(1 + A^(2*m+1))^(m+1) ), #V-3); ); polcoef(A, n)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Cf. A378264.
Sequence in context: A149274 A151427 A149275 * A149276 A149277 A149278
KEYWORD
nonn,new
AUTHOR
Paul D. Hanna, Dec 08 2024
STATUS
approved