login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378829
G.f. A(x) satisfies 1 = Sum_{n=-oo..+oo} (A(x)^n - 2*x)^n.
0
1, -2, 5, -13, 30, -74, 202, -616, 2126, -7828, 29366, -110398, 414214, -1556848, 5892713, -22524354, 86954484, -338421674, 1324660464, -5204326208, 20498580511, -80907096678, 320002290542, -1268500509496, 5040195484362, -20073242195580, 80120884387322, -320442284717582, 1283939790460139
OFFSET
1,2
COMMENTS
A signed version of A359673.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) 1 = Sum_{n=-oo..+oo} (A(x)^n - 2*x)^n.
(2) 1 = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 2*x)^(n-1).
(3) 0 = Sum_{n=-oo..+oo} (-1)^n * (A(x)^n - 2*x)^(n-1).
(4) 0 = Sum_{n=-oo..+oo} (-1)^n * A(x)^(2*n) * (A(x)^n + 2*x)^(n+1).
(5) 1 = Sum_{n=-oo..+oo} A(x)^(n^2) / (1 - 2*x*A(x)^n)^n.
(6) 1 = Sum_{n=-oo..+oo} A(x)^(n^2) / (1 + 2*x*A(x)^n)^(n+1).
(7) 0 = Sum_{n=-oo..+oo} (-1)^n * A(x)^(n*(n+1)) / (1 + 2*x*A(x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = x - 2*x^2 + 5*x^3 - 13*x^4 + 30*x^5 - 74*x^6 + 202*x^7 - 616*x^8 + 2126*x^9 - 7828*x^10 + 29366*x^11 - 110398*x^12 + ...
where 1 = Sum_{n=-oo..+oo} (A(x)^n - 2*x)^n.
SPECIFIC VALUES.
A(t) = 1/6 at t = 0.24134833288352420167420358490093379236139061653959...
where 1 = Sum_{n=-oo..+oo} (1/6^n - 2*t)^n.
A(t) = 1/7 at t = 0.19473287649699543474178954182484954936895675300220...
where 1 = Sum_{n=-oo..+oo} (1/7^n - 2*t)^n.
A(t) = 1/8 at t = 0.16330047299490635761734791354706359079698287572429...
where 1 = Sum_{n=-oo..+oo} (1/8^n - 2*t)^n.
A(t) = exp(-Pi) at t = 0.04720243920412572796492634515550526365563452970121157309...
where 1 = Sum_{n=-oo..+oo} (exp(-n*Pi) - 2*t)^n,
also, 1 = Sum_{n=-oo..+oo} exp(-n^2*Pi) / (1 - 2*t*exp(-n*Pi))^n;
compare to Sum_{n=-oo..+oo} exp(-n^2*Pi) = Pi^(1/4)/gamma(3/4).
A(t) = exp(-2*Pi) at t = 0.001874436990256710694689538031391789940066981740061145959...
where 1 = Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 2*t)^n,
also, 1 = Sum_{n=-oo..+oo} exp(-2*n^2*Pi) / (1 - 2*t*exp(-2*n*Pi))^n;
compare to Sum_{n=-oo..+oo} exp(-2*n^2*Pi) = Pi^(1/4)/gamma(3/4) * sqrt(2+sqrt(2))/2.
A(1/5) = 0.14570268760195709902234365534810153966906514204980...
where 1 = Sum_{n=-oo..+oo} (A(1/5)^n - 2/5)^n.
A(1/6) = 0.12698642862956730423090954809810167590805619510041...
where 1 = Sum_{n=-oo..+oo} (A(1/6)^n - 1/3)^n.
A(1/7) = 0.11253270334433369822784652362071431711460474251926...
A(1/8) = 0.10104551587569245791494155789285565556961920656039...
where 1 = Sum_{n=-oo..+oo} (A(1/8)^n - 1/4)^n.
PROG
(PARI) {a(n) = my(V=[0, 1], A); for(i=1, n, V=concat(V, 0); A=Ser(V);
V[#V] = polcoef( -sum(m=-#V, #V, (A^m - 2*x)^m ), #V-1)/2); V[n+1]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A309535 A018012 A359673 * A216684 A065377 A215215
KEYWORD
sign,new
AUTHOR
Paul D. Hanna, Dec 13 2024
STATUS
approved