Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Dec 14 2024 07:16:38
%S 1,-2,5,-13,30,-74,202,-616,2126,-7828,29366,-110398,414214,-1556848,
%T 5892713,-22524354,86954484,-338421674,1324660464,-5204326208,
%U 20498580511,-80907096678,320002290542,-1268500509496,5040195484362,-20073242195580,80120884387322,-320442284717582,1283939790460139
%N G.f. A(x) satisfies 1 = Sum_{n=-oo..+oo} (A(x)^n - 2*x)^n.
%C A signed version of A359673.
%H Paul D. Hanna, <a href="/A378829/b378829.txt">Table of n, a(n) for n = 1..303</a>
%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
%F (1) 1 = Sum_{n=-oo..+oo} (A(x)^n - 2*x)^n.
%F (2) 1 = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 2*x)^(n-1).
%F (3) 0 = Sum_{n=-oo..+oo} (-1)^n * (A(x)^n - 2*x)^(n-1).
%F (4) 0 = Sum_{n=-oo..+oo} (-1)^n * A(x)^(2*n) * (A(x)^n + 2*x)^(n+1).
%F (5) 1 = Sum_{n=-oo..+oo} A(x)^(n^2) / (1 - 2*x*A(x)^n)^n.
%F (6) 1 = Sum_{n=-oo..+oo} A(x)^(n^2) / (1 + 2*x*A(x)^n)^(n+1).
%F (7) 0 = Sum_{n=-oo..+oo} (-1)^n * A(x)^(n*(n+1)) / (1 + 2*x*A(x)^n)^(n+1).
%e G.f.: A(x) = x - 2*x^2 + 5*x^3 - 13*x^4 + 30*x^5 - 74*x^6 + 202*x^7 - 616*x^8 + 2126*x^9 - 7828*x^10 + 29366*x^11 - 110398*x^12 + ...
%e where 1 = Sum_{n=-oo..+oo} (A(x)^n - 2*x)^n.
%e SPECIFIC VALUES.
%e A(t) = 1/6 at t = 0.24134833288352420167420358490093379236139061653959...
%e where 1 = Sum_{n=-oo..+oo} (1/6^n - 2*t)^n.
%e A(t) = 1/7 at t = 0.19473287649699543474178954182484954936895675300220...
%e where 1 = Sum_{n=-oo..+oo} (1/7^n - 2*t)^n.
%e A(t) = 1/8 at t = 0.16330047299490635761734791354706359079698287572429...
%e where 1 = Sum_{n=-oo..+oo} (1/8^n - 2*t)^n.
%e A(t) = exp(-Pi) at t = 0.04720243920412572796492634515550526365563452970121157309...
%e where 1 = Sum_{n=-oo..+oo} (exp(-n*Pi) - 2*t)^n,
%e also, 1 = Sum_{n=-oo..+oo} exp(-n^2*Pi) / (1 - 2*t*exp(-n*Pi))^n;
%e compare to Sum_{n=-oo..+oo} exp(-n^2*Pi) = Pi^(1/4)/gamma(3/4).
%e A(t) = exp(-2*Pi) at t = 0.001874436990256710694689538031391789940066981740061145959...
%e where 1 = Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 2*t)^n,
%e also, 1 = Sum_{n=-oo..+oo} exp(-2*n^2*Pi) / (1 - 2*t*exp(-2*n*Pi))^n;
%e compare to Sum_{n=-oo..+oo} exp(-2*n^2*Pi) = Pi^(1/4)/gamma(3/4) * sqrt(2+sqrt(2))/2.
%e A(1/5) = 0.14570268760195709902234365534810153966906514204980...
%e where 1 = Sum_{n=-oo..+oo} (A(1/5)^n - 2/5)^n.
%e A(1/6) = 0.12698642862956730423090954809810167590805619510041...
%e where 1 = Sum_{n=-oo..+oo} (A(1/6)^n - 1/3)^n.
%e A(1/7) = 0.11253270334433369822784652362071431711460474251926...
%e A(1/8) = 0.10104551587569245791494155789285565556961920656039...
%e where 1 = Sum_{n=-oo..+oo} (A(1/8)^n - 1/4)^n.
%o (PARI) {a(n) = my(V=[0,1],A); for(i=1, n, V=concat(V, 0); A=Ser(V);
%o V[#V] = polcoef( -sum(m=-#V, #V, (A^m - 2*x)^m ), #V-1)/2); V[n+1]}
%o for(n=1, 30, print1(a(n), ", "))
%Y Cf. A355868, A359673.
%K sign
%O 1,2
%A _Paul D. Hanna_, Dec 13 2024