login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (1 + A(x)^(2*n+1))^(n+1).
1

%I #10 Dec 09 2024 05:25:22

%S 1,1,4,11,42,153,610,2459,10252,43409,187057,816018,3600270,16030706,

%T 71959064,325263050,1479270802,6764056992,31078467690,143411844050,

%U 664352697921,3088451702294,14403683874057,67371591912847,315969606711112,1485546933158293,7000321009422438,33057274408834760

%N G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (1 + A(x)^(2*n+1))^(n+1).

%C Related identity: Sum_{n=-oo..+oo} x^n*(1 - x^(2*n+1))^n = 0.

%H Paul D. Hanna, <a href="/A378830/b378830.txt">Table of n, a(n) for n = 1..350</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.

%F (1) 1/x = Sum_{n=-oo..+oo} A(x)^n * (1 + A(x)^(2*n+1))^(n+1).

%F (2) A(x) = x * Sum_{n=-oo..+oo} A(x)^(2*n^2) / (1 + A(x)^(2*n+1))^n.

%F (3) 0 = Sum_{n=-oo..+oo} (-1)^n * A(x)^n * (1 + A(x)^(2*n+1))^n.

%F (4) 0 = Sum_{n=-oo..+oo} (-1)^n * A(x)^(2*n*(n+1)) / (1 + A(x)^(2*n+1))^(n+1).

%e G.f.: A(x) = x + x^2 + 4*x^3 + 11*x^4 + 42*x^5 + 153*x^6 + 610*x^7 + 2459*x^8 + 10252*x^9 + 43409*x^10 + 187057*x^11 + 816018*x^12 + ...

%e RELATED SERIES.

%e P(x) = Sum_{n>=0} A(x)^n * (1 + A(x)^(2*n+1))^(n+1) = 1 + 2*x + 3*x^2 + 11*x^3 + 37*x^4 + 142*x^5 + 558*x^6 + 2279*x^7 + 9512*x^8 + 40490*x^9 + 174938*x^10 + 765476*x^11 + 3384754*x^12 + ...

%e Q(x) = Sum_{n>=0} A(x)^(2*n^2) / (1 + A(x)^(2*n+1))^n = 1 + x^2 + 2*x^3 + 9*x^4 + 29*x^5 + 117*x^6 + 448*x^7 + 1840*x^8 + 7587*x^9 + 32176*x^10 + 138061*x^11 + 601438*x^12 + ...

%e where 1/x = P(x) + Q(x)/A(x).

%e SPECIFIC VALUES.

%e The radius of convergence of A(x) is r = 0.20038502229069403084620325...

%e where A(r) = 0.4235821265247070959910742044905... is a relative maximum.

%e A(t) = 1/3 at t = 0.19298266815962402196002999560324674579680552969760...

%e where t = 1/Sum_{n=-oo..+oo} 3*(1/3 + 1/3^(2*n))^n.

%e A(t) = 1/4 at t = 0.17130301690449912394460704626585777982140255712239...

%e where t = 1/Sum_{n=-oo..+oo} 4*(1/4 + 1/4^(2*n))^n.

%e A(t) = 1/5 at t = 0.15033802491039176999109756769243883091099790716207...

%e where t = 1/Sum_{n=-oo..+oo} 5*(1/5 + 1/5^(2*n))^n.

%e A(1/5) = 0.40253057450577597376072876549180046708653413735166...

%e A(1/6) = 0.23753161877865991223985753270425915308397301411583...

%e A(1/7) = 0.18514087266912257977795325275140987102038951384383...

%e A(1/8) = 0.15359127433897786786958778886350143695575182881679...

%e A(1/10) = 0.1157765216505016369845861113674765481114936795655...

%o (PARI) {a(n) = my(V=[0,1],A); for(i=1,n, V=concat(V,0); A = Ser(V);

%o V[#V] = polcoef( sum(m=-#A,#A, A^m*(1 + A^(2*m+1))^(m+1) ), #V-3); ); polcoef(A,n)}

%o for(n=1,40,print1(a(n),", "))

%Y Cf. A378264.

%K nonn

%O 1,3

%A _Paul D. Hanna_, Dec 08 2024