OFFSET
0,1
LINKS
Necdet Batir and Anthony Sofo, On some series involving reciprocals of binomial coefficients, Appl. Math. Comp., Vol. 220 (2013), pp. 331-338.
FORMULA
Equals 4F3(1, 4/3, 5/3, 2; 5/4, 3/2, 7/4; -27/256) / 4, where 4F3 is a generalized hypergeometric function.
Equals 27*d^2/((d^2-4)*(2*d^2+1)^2) + (3*d*(d^2-1)*(2*d^2-1)/(2*(2*d^2+1)^3)) * log(abs((d-1)/(d+1))) + (3*(d^2-1)*(2*d^4-2*d^3-7*d^2-3*d+1)/(4*d*(2*d^2+1)^3)) * (d/(d+2))^(3/2) * arctan(2*sqrt(d^2+2*d)/(d^2+2*d-1)) - (3*(d^2-1)*(2*d^4+2*d^3-7*d^2+3*d+1)/(4*d*(2*d^2+1)^3)) * (d/(d-2))^(3/2) * arctan(2*sqrt(d^2-2*d)/(d^2-2*d-1)), where d = sqrt(1 - (8/sqrt(3))*(((3*sqrt(3)+sqrt(283))/16)^(1/3) - (((3*sqrt(3)+sqrt(283))/16)^(-1/3)))) (Batir and Sofo, 2013, pp. 336-337, Example 4).
EXAMPLE
-0.21833954717793443687099832102788539198304864029226...
MATHEMATICA
RealDigits[HypergeometricPFQ[{1, 4/3, 5/3, 2}, {5/4, 3/2, 7/4}, -27/256]/ 4, 10, 120][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Dec 07 2024
STATUS
approved