login
A378203
Number of palindromic n-ary words of length n that include the last letter of their respective alphabet.
1
1, 1, 1, 5, 7, 61, 91, 1105, 1695, 26281, 40951, 771561, 1214423, 26916709, 42664987, 1087101569, 1732076671, 49868399761, 79771413871, 2560599031177, 4108933742199, 145477500542221, 234040800869107, 9059621800971105, 14605723004036255, 613627780919407801
OFFSET
0,4
FORMULA
a(n) = n^h(n) - (n-1)^h(n) for n > 0, where h(n) = ceiling(n/2).
a(n) = A047969(n-1,h(n)-1) for n > 0.
EXAMPLE
a(0) = 1: ().
a(1) = 1: (a).
a(2) = 1: (b,b).
a(3) = 5: (a,c,a), (b,c,b), (c,a,c), (c,b,c), (c,c,c).
MAPLE
a:= n-> (h-> n^h-`if`(n=0, 0, (n-1)^h))(ceil(n/2)):
seq(a(n), n=0..25); # Alois P. Heinz, Nov 21 2024
MATHEMATICA
h[n_] := Ceiling[n/2]; a[n_] := n^h[n] - (n - 1)^h[n]; Join[{1}, Table[a[n], {n, 25}]] (* James C. McMahon, Nov 21 2024 *)
PROG
(PARI)
h(n) = {ceil(n/2)}
a(n) = {n^h(n)-(n-1)^h(n)}
(Python)
def A378203(n): return n**(m:=n+1>>1)-(n-1)**m if n else 1 # Chai Wah Wu, Nov 21 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
John Tyler Rascoe, Nov 19 2024
STATUS
approved