OFFSET
1,2
COMMENTS
Sequence A375602 generates an infinite cyclic group under composition. The identity element is A000027.
Each column is triangle read by rows (blocks). Each row is a permutation of a block of consecutive numbers; the blocks are disjoint and every positive number belongs to some block. Row n has length n(n^2 + 1)/2 = A006003(n).
Each column is an intra-block permutation of the positive integers.
For n > 1, each row combines n consecutive antidiagonals.
Generalization of the Cantor numbering method.
LINKS
Boris Putievskiy, Table of n, a(n) for n = 1..9870
Boris Putievskiy, Integer Sequences: Irregular Arrays and Intra-Block Permutations, arXiv:2310.18466 [math.CO], 2023.
FORMULA
EXAMPLE
Table begins:
k = 1 2 3 4 5 6
--------------------------------------
n = 1: 1, 1, 1, 1, 1, 1, ...
n = 2: 2, 2, 2, 2, 2, 2, ...
n = 3: 4, 3, 4, 3, 4, 3, ...
n = 4: 3, 4, 3, 4, 3, 4, ...
n = 5: 5, 5, 5, 5, 5, 5, ...
n = 6: 6, 6, 6, 6, 6, 6, ...
n = 7: 7, 7, 7, 7, 7, 7, ...
n = 8: 10, 16, 9, 13, 14, 17, ...
n = 9: 13, 14, 17, 12, 11, 8, ...
n = 10: 16, 9, 13, 14, 17, 12, ...
...
Column k = 1 contains the start of A375602.
Ord(T(1,1),T(2,1), ... T(7,1)) = 2, ord(T(1,1),T(2,1), ... T(21,1)) = 18, ord(T(1,1),T(2,1), ... T(55,1)) = 1980, ord(T(1,1),T(2,1), ... T(120,1)) = 51480, where ord is order of permutation.
The first 6 antidiagonals are:
1;
2, 1;
4, 2, 1;
3, 3, 2, 1;
5, 4, 4, 2, 1;
6, 5, 3, 3, 2, 1;
MATHEMATICA
a[n_]:=Module[{L, Ld, Rd, P, Result}, L=Ceiling[(Sqrt[4*Sqrt[8*n+1]-3]-1)/2]; Ld=Ceiling[(Sqrt[8*n+1]-1)/2]; Rd=n-(Ld-1)*Ld/2; P=L*Rd+Ld-L*(L+1)/2-Max[Rd-(L^2-L+2)/2, 0]*(Max[Rd-(L^2-L+2)/2, 0]+1)/2; Result=P+(L-1)*L*(L^2-L+2)/8; Result] (*A375602*) composeSequence[a_, n_, k_]:=Nest[a, n, k]
Nmax=10; Kmax=6; T=Table[composeSequence[a, n, k], {n, 1, Nmax}, {k, 1, Kmax}]
CROSSREFS
KEYWORD
AUTHOR
Boris Putievskiy, Nov 19 2024
STATUS
approved