OFFSET
0,2
COMMENTS
After 0, the sequence will continue to be 0. A sequence satisfying this property cannot have a subsequence which violates it, thus there must exist a sequence of length n-1 if there exists a sequence of length n.
EXAMPLE
a(3) = 6 since we have [0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0].
MATHEMATICA
HasEquallySpacedKBits[bits_, k_] :=
If[k == 1, True,
Module[{n = Length[bits], found = False},
Do[If[Count[Table[bits[[start + gap*i]], {i, 0, k - 1}],
bits[[start]]] == k, found = True; Break[]], {gap, 1,
Floor[n/(k - 1)]}, {start, 1, n - gap*(k - 1)}];
found]]
BitSequence[k_] :=
Module[{prevSequences = {{}}, currSequences, n = 0, ExtendSequence},
ExtendSequence[seq_] :=
Module[{newSeq0, newSeq1, result = {}}, newSeq0 = Join[seq, {0}];
newSeq1 = Join[seq, {1}];
If[! HasEquallySpacedKBits[newSeq0, k], AppendTo[result, newSeq0]];
If[! HasEquallySpacedKBits[newSeq1, k], AppendTo[result, newSeq1]];
result];
Function[targetN,
Print["k=", k, ", n=", n, ": count=", Length[prevSequences]];
While[n < targetN, n++;
currSequences = Flatten[ExtendSequence /@ prevSequences, 1];
prevSequences = currSequences;
Print["k=", k, ", n=", n, ": count=", Length[prevSequences]]; ]; ]]
BitSequence[3][9]
(* Ethan Ji, Nov 19 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ethan Ji, Nov 19 2024
STATUS
approved