login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378131
Decimal expansion of sqrt(1 + sqrt(3))*L/(Pi*12^(1/8)), where L is the lemniscate constant (A062539).
4
1, 0, 1, 1, 2, 0, 4, 6, 9, 5, 5, 3, 7, 6, 9, 0, 0, 9, 0, 5, 7, 2, 8, 5, 5, 9, 8, 8, 5, 6, 9, 6, 2, 5, 8, 0, 3, 2, 8, 3, 5, 3, 6, 6, 5, 8, 4, 7, 9, 5, 8, 1, 9, 2, 0, 4, 2, 2, 3, 1, 0, 8, 1, 0, 3, 5, 4, 7, 3, 8, 0, 6, 8, 3, 0, 1, 1, 5, 6, 1, 0, 6, 0, 4, 5, 1, 2, 1, 7, 7
OFFSET
1,5
FORMULA
Equals sqrt((1 + sqrt(3))*Pi)/(2^(3/4)*3^(1/8)*Gamma(3/4)^2) = sqrt(A090388*A000796)/(2^(3/4)*3^(1/8)*A068465^2).
Equals Sum_{j,k integers} exp(-2*Pi*(j^2 + j*k + k^2)).
Equals 2F1(1/3, 2/3, 1, (3*sqrt(3) - 5)/4), where 2F1 is the ordinary hypergeometric function.
EXAMPLE
1.011204695537690090572855988569625803283536658...
MATHEMATICA
First[RealDigits[Sqrt[(1 + Sqrt[3])*Pi]/(2^(3/4)*3^(1/8)*Gamma[3/4]^2), 10, 100]] (* or *)
First[RealDigits[Hypergeometric2F1[1/3, 2/3, 1, (3*Sqrt[3] - 5)/4], 10, 100]]
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Nov 18 2024
STATUS
approved