login
A378131
Decimal expansion of sqrt(1 + sqrt(3))*L/(Pi*12^(1/8)), where L is the lemniscate constant (A062539).
4
1, 0, 1, 1, 2, 0, 4, 6, 9, 5, 5, 3, 7, 6, 9, 0, 0, 9, 0, 5, 7, 2, 8, 5, 5, 9, 8, 8, 5, 6, 9, 6, 2, 5, 8, 0, 3, 2, 8, 3, 5, 3, 6, 6, 5, 8, 4, 7, 9, 5, 8, 1, 9, 2, 0, 4, 2, 2, 3, 1, 0, 8, 1, 0, 3, 5, 4, 7, 3, 8, 0, 6, 8, 3, 0, 1, 1, 5, 6, 1, 0, 6, 0, 4, 5, 1, 2, 1, 7, 7
OFFSET
1,5
FORMULA
Equals sqrt((1 + sqrt(3))*Pi)/(2^(3/4)*3^(1/8)*Gamma(3/4)^2) = sqrt(A090388*A000796)/(2^(3/4)*3^(1/8)*A068465^2).
Equals Sum_{j,k integers} exp(-2*Pi*(j^2 + j*k + k^2)).
Equals 2F1(1/3, 2/3, 1, (3*sqrt(3) - 5)/4), where 2F1 is the ordinary hypergeometric function.
EXAMPLE
1.011204695537690090572855988569625803283536658...
MATHEMATICA
First[RealDigits[Sqrt[(1 + Sqrt[3])*Pi]/(2^(3/4)*3^(1/8)*Gamma[3/4]^2), 10, 100]] (* or *)
First[RealDigits[Hypergeometric2F1[1/3, 2/3, 1, (3*Sqrt[3] - 5)/4], 10, 100]]
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Nov 18 2024
STATUS
approved