login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317965
Representation numbers (or theta series) for either one of Schiemann's pair of four-dimensional positive definite quadratic forms with the same representation numbers.
2
1, 0, 2, 0, 4, 6, 10, 6, 12, 6, 6, 8, 10, 8, 10, 22, 24, 4, 28, 12, 24, 20, 24, 14, 42, 20, 16, 14, 32, 10, 46, 8, 46, 30, 28, 28, 62, 34, 32, 40, 38, 28, 48, 28, 60, 50, 48, 32, 50, 28, 62, 34, 52, 26, 68, 30, 62, 56, 68, 38, 110, 28, 50, 64, 86, 60, 72, 50, 56, 34, 88, 50, 138
OFFSET
0,3
COMMENTS
a(n) is the number of ways either form represents 2n.
a(n) is the number of integer solutions (x, y, z, w) to n = 2*x^2 + 4*y^2 + 5*z^2 + 5*w^2 + 2*x*y + 3*y*z + w*x + w*y + 5*w*z. The negative of a solution is a different solution unless n = 0. This implies that solutions come in pairs which implies a(n) is even unless n = 0. - Michael Somos, Apr 16 2022
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, Third edition, p. xxix.
LINKS
J. H. Conway and N. J. A. Sloane, Four-Dimensional Lattices With the Same Theta Series, Duke Math. J., 66 (International Mathematics Research Notices Number 4) (1992), pp. 93-96. (Pages are in reverse order)
A. G. Earnest and G. Nipp, On the theta series of positive quaternary quadratic forms, CR Math. Rep. Acad. Sci. Canada 13 (1991): 33-38. See p. 36.
Alexander Schiemann, Ein Beispiel positiv definiter quadratischer Formen der Dimension 4 mit gleichen Darstellungszahlen, Archiv der Mathematik, 54.4 (1990): 372-375.
EXAMPLE
G.f. = 1 + 2*x^2 + 4*x^4 + 6*x^5 + 10*x^6 + 6*x^7 + 12*x^8 + 6*x^9 + 6*x^10 + ... - Michael Somos, Apr 16 2022
MATHEMATICA
a[ n_ ] := Module[{x, y, z, w}, Length @ FindInstance[ n == 2*x^2 + 4*y^2 + 5*z^2 + 5*w^2 + 2*x*y + 3*y*z + w*x + w*y + 5*w*z, {x, y, z, w}, Integers, 10^9]]; (* Michael Somos, Apr 16 2022 *)
PROG
(PARI) { S1 = [4, 2, 0, 1; 2, 8, 3, 1; 0, 3, 10, 5; 1, 1, 5, 10];
(dyn_th(N) = 1 + 2 * x * Ser(qfrep(S1, N, 1))); th = dyn_th(50);
a(n) = if(n >= #th - 2, th = dyn_th(2*n)); polcoeff(th, n); };
\\ Ben Mares, Apr 04 2022
(PARI) {a(n) = my(G = [4, 2, 0, 1; 2, 8, 3, 1; 0, 3, 10, 5; 1, 1, 5, 10]); if(n<0, 0, polcoeff(1 + 2*x*Ser(qfrep(G, n, 1)), n))}; /* Michael Somos, Apr 16 2022 */
CROSSREFS
Sequence in context: A287846 A378131 A085623 * A369025 A190791 A002885
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 26 2018
EXTENSIONS
More terms from Ben Mares, Mar 31 2022
STATUS
approved