login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378006
Square table read by descending antidiagonals: the k-th column has Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo k.
4
1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,33
COMMENTS
For fixed k, we have Product_{chi} L(chi,s) = Product_{p not dividing k} 1/(1 - 1/p^(ord(p,k)*s))^(phi(k)/ord(p,k)), where phi = A000010 is the Euler totient function and ord(a,k) is the multiplicative order of a modulo k; see Section 3.4 of Chapter VI, Proposition 13, page 72 of J.-P. Serre, A Course in Arithmetic. Using the series expansion of 1/(1-x)^r, we get Product_{chi} L(chi,s) = Product_{p not dividing k} (Sum_{n>=0} binomial(n+phi(k)/ord(p,k)-1,phi(k)/ord(p,k)-1)/p^(ord(p,k)*s)), giving us the formula to calculate T(n,k).
From the formula we can wee that T(n,k) = 0 unless n == 1 (mod k). A378007 is the condensed version giving only {T(k*n+1,k)}.
LINKS
Jianing Song, Table of n, a(n) for n = 1..11325 (the first 150 diagonals, with n+k = 2..151)
J.-P. Serre, A Course in Arithmetic, Springer-Verlag, 1973.
FORMULA
Each column is multiplicative: T(p^e,k) = 0 if p divides k; 0 if e is not divisible by ord(p,k); binomial(e/ord(p,k)+phi(k)/ord(p,k)-1,phi(k)/ord(p,k)-1) otherwise.
For odd k, T(2*k,n) = T(k,n) for odd n, 0 for even n.
EXAMPLE
Table starts
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 2, 0, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 2, 0, 0, 2, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, 2, 0, 0, 0, ...
1, 1, 0, 1, 0, 0, 0, 2, 0, 0, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
See A378007 for more details.
PROG
(PARI) A378006(n, k) = {
my(f = factor(n), res = 1); for(i=1, #f~, if(k % f[i, 1] == 0, return(0));
my(d = znorder(Mod(f[i, 1], k))); if(f[i, 2] % d != 0, return(0), my(m = f[i, 2]/d, r = eulerphi(k)/d); res *= binomial(m+r-1, r-1)));
res; }
CROSSREFS
Columns: A000012 (k=1), A000035 (k=2), A045833 (k=3), A008442 (k=4).
Cf. A378007.
Sequence in context: A320655 A359786 A359763 * A277017 A178498 A353422
KEYWORD
nonn,tabl,easy
AUTHOR
Jianing Song, Nov 14 2024
STATUS
approved