OFFSET
1,33
COMMENTS
For fixed k, we have Product_{chi} L(chi,s) = Product_{p not dividing k} 1/(1 - 1/p^(ord(p,k)*s))^(phi(k)/ord(p,k)), where phi = A000010 is the Euler totient function and ord(a,k) is the multiplicative order of a modulo k; see Section 3.4 of Chapter VI, Proposition 13, page 72 of J.-P. Serre, A Course in Arithmetic. Using the series expansion of 1/(1-x)^r, we get Product_{chi} L(chi,s) = Product_{p not dividing k} (Sum_{n>=0} binomial(n+phi(k)/ord(p,k)-1,phi(k)/ord(p,k)-1)/p^(ord(p,k)*s)), giving us the formula to calculate T(n,k).
From the formula we can wee that T(n,k) = 0 unless n == 1 (mod k). A378007 is the condensed version giving only {T(k*n+1,k)}.
LINKS
Jianing Song, Table of n, a(n) for n = 1..11325 (the first 150 diagonals, with n+k = 2..151)
J.-P. Serre, A Course in Arithmetic, Springer-Verlag, 1973.
FORMULA
Each column is multiplicative: T(p^e,k) = 0 if p divides k; 0 if e is not divisible by ord(p,k); binomial(e/ord(p,k)+phi(k)/ord(p,k)-1,phi(k)/ord(p,k)-1) otherwise.
For odd k, T(2*k,n) = T(k,n) for odd n, 0 for even n.
EXAMPLE
Table starts
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 2, 0, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 2, 0, 0, 2, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, 2, 0, 0, 0, ...
1, 1, 0, 1, 0, 0, 0, 2, 0, 0, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
See A378007 for more details.
PROG
(PARI) A378006(n, k) = {
my(f = factor(n), res = 1); for(i=1, #f~, if(k % f[i, 1] == 0, return(0));
my(d = znorder(Mod(f[i, 1], k))); if(f[i, 2] % d != 0, return(0), my(m = f[i, 2]/d, r = eulerphi(k)/d); res *= binomial(m+r-1, r-1)));
res; }
CROSSREFS
KEYWORD
AUTHOR
Jianing Song, Nov 14 2024
STATUS
approved