login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square table read by descending antidiagonals: the k-th column has Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo k.
4

%I #15 Nov 14 2024 23:23:53

%S 1,1,1,1,0,1,1,0,1,1,1,0,0,0,1,1,0,0,1,1,1,1,0,0,0,0,0,1,1,0,0,0,2,0,

%T 1,1,1,0,0,0,0,0,2,0,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,0,

%U 0,0,0,0,2,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1

%N Square table read by descending antidiagonals: the k-th column has Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo k.

%C For fixed k, we have Product_{chi} L(chi,s) = Product_{p not dividing k} 1/(1 - 1/p^(ord(p,k)*s))^(phi(k)/ord(p,k)), where phi = A000010 is the Euler totient function and ord(a,k) is the multiplicative order of a modulo k; see Section 3.4 of Chapter VI, Proposition 13, page 72 of J.-P. Serre, A Course in Arithmetic. Using the series expansion of 1/(1-x)^r, we get Product_{chi} L(chi,s) = Product_{p not dividing k} (Sum_{n>=0} binomial(n+phi(k)/ord(p,k)-1,phi(k)/ord(p,k)-1)/p^(ord(p,k)*s)), giving us the formula to calculate T(n,k).

%C From the formula we can wee that T(n,k) = 0 unless n == 1 (mod k). A378007 is the condensed version giving only {T(k*n+1,k)}.

%H Jianing Song, <a href="/A378006/b378006.txt">Table of n, a(n) for n = 1..11325</a> (the first 150 diagonals, with n+k = 2..151)

%H J.-P. Serre, <a href="https://www.math.purdue.edu/~jlipman/MA598/Serre-Course%20in%20Arithmetic.pdf">A Course in Arithmetic</a>, Springer-Verlag, 1973.

%F Each column is multiplicative: T(p^e,k) = 0 if p divides k; 0 if e is not divisible by ord(p,k); binomial(e/ord(p,k)+phi(k)/ord(p,k)-1,phi(k)/ord(p,k)-1) otherwise.

%F For odd k, T(2*k,n) = T(k,n) for odd n, 0 for even n.

%e Table starts

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...

%e 1, 1, 0, 2, 0, 0, 0, 0, 0, 0, ...

%e 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 1, 1, 2, 0, 0, 2, 0, 0, 0, 0, ...

%e 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, ...

%e 1, 1, 0, 1, 0, 0, 0, 2, 0, 0, ...

%e 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e See A378007 for more details.

%o (PARI) A378006(n,k) = {

%o my(f = factor(n), res = 1); for(i=1, #f~, if(k % f[i,1] == 0, return(0));

%o my(d = znorder(Mod(f[i,1],k))); if(f[i,2] % d != 0, return(0), my(m = f[i,2]/d, r = eulerphi(k)/d); res *= binomial(m+r-1,r-1)));

%o res;}

%Y Columns: A000012 (k=1), A000035 (k=2), A045833 (k=3), A008442 (k=4).

%Y Cf. A378007.

%K nonn,tabl,easy

%O 1,33

%A _Jianing Song_, Nov 14 2024