login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A359550(A003415(A276085(n))), where A359550 is multiplicative with a(p^e) = 1 if p > e, otherwise 0, A003415 is the arithmetic derivative, and A276085 is fully additive with a(p) = p#/p.
2

%I #6 Nov 18 2024 11:54:38

%S 0,0,1,1,1,1,1,1,0,1,1,0,1,1,0,0,1,1,1,0,0,1,1,1,0,1,1,0,1,1,1,1,0,0,

%T 0,1,1,1,0,1,1,1,1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,1,1,0,1,1,0,1,1,0,

%U 0,1,1,1,1,1,1,0,0,1,1,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0,1,1,1,1,1,1,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,1,0,1,0

%N a(n) = A359550(A003415(A276085(n))), where A359550 is multiplicative with a(p^e) = 1 if p > e, otherwise 0, A003415 is the arithmetic derivative, and A276085 is fully additive with a(p) = p#/p.

%H Antti Karttunen, <a href="/A377988/b377988.txt">Table of n, a(n) for n = 1..481</a>

%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>

%F a(n) = A359550(A373842(n)) = A368915(A276085(n)).

%F a(n) <= A377868(n).

%o (PARI)

%o A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));

%o A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1,primepi(f[k, 1]-1),prime(i))); };

%o A359550(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(0)); if(pp > n, return(1))); };

%o A373842(n) = A003415(A276085(n));

%o A377988(n) = A359550(A373842(n));

%Y Characteristic function of A377989.

%Y Cf. A003415, A276085, A359550, A368915, A373842, A377868.

%K nonn

%O 1

%A _Antti Karttunen_, Nov 18 2024