login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377933
First differences of consecutive perfect powers m^k with k>=3 (A076467).
2
7, 8, 11, 5, 32, 17, 44, 3, 88, 27, 13, 87, 169, 113, 104, 271, 24, 272, 35, 397, 320, 139, 10, 204, 343, 381, 250, 721, 817, 919, 729, 298, 917, 224, 192, 1069, 739, 648, 1519, 1657, 817, 984, 759, 423, 769, 2107, 1053, 1216, 2437, 2611, 1561, 1230, 2977, 3169, 2479, 888
OFFSET
1,1
FORMULA
a(n) = A076467(n+1) - A076467(n).
MAPLE
N:= 10^5: # for terms <= N of A076467
S:= sort(convert({1, seq(seq(m^k, m = 2 .. floor(N^(1/k))), k=3..ilog2(N))}, list)):
S[2..-1]-S[1..-2]; # Robert Israel, Nov 24 2024
PROG
(PARI) lista(nn) = my(S=List(1)); for(x=2, sqrtnint(nn, 3), for(k=3, logint(nn, x), listput(S, x^k))); my(v=Set(S)); vector(#v-1, k, v[k+1]-v[k]); \\ Michel Marcus, Nov 24 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Hugo Pfoertner, Nov 24 2024
STATUS
approved