login
A377734
Number of integers less than n that have the same smallest prime factor as n.
2
0, 0, 0, 1, 0, 2, 0, 3, 1, 4, 0, 5, 0, 6, 2, 7, 0, 8, 0, 9, 3, 10, 0, 11, 1, 12, 4, 13, 0, 14, 0, 15, 5, 16, 2, 17, 0, 18, 6, 19, 0, 20, 0, 21, 7, 22, 0, 23, 1, 24, 8, 25, 0, 26, 3, 27, 9, 28, 0, 29, 0, 30, 10, 31, 4, 32, 0, 33, 11, 34, 0, 35, 0, 36, 12, 37, 2, 38, 0, 39
OFFSET
1,6
LINKS
Eric Weisstein's World of Mathematics, Least Prime Factor.
FORMULA
a(n) = |{j < n : lpf(j) = lpf(n)}|.
a(n) = A078898(n) - 1.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Sum_{k>=1} (A038110(k)/A038111(k))^2 = 0.2847976823663... . - Amiram Eldar, Nov 21 2024
MATHEMATICA
Table[Length[Select[Range[n - 1], If[# == 1, 1, FactorInteger[#][[1, 1]]] == If[n == 1, 1, FactorInteger[n][[1, 1]]] &]], {n, 80}]
seq[len_] := Module[{t = Table[FactorInteger[n][[1, 1]], {n, 1, len}], s = Table[0, {len}]}, Do[s[[i]] = Count[t[[1;; i-1]], t[[i]]], {i, 1, len}]; s]; seq[80] (* Amiram Eldar, Nov 21 2024 *)
PROG
(PARI) a(n) = if (n>1, my(p=vecmin(factor(n)[, 1])); sum(k=2, n-1, p == vecmin(factor(k)[, 1])), 0); \\ Michel Marcus, Nov 16 2024
KEYWORD
nonn,new
AUTHOR
Ilya Gutkovskiy, Nov 05 2024
STATUS
approved