login
A377694
Decimal expansion of the surface area of a truncated dodecahedron with unit edge length.
3
1, 0, 0, 9, 9, 0, 7, 6, 0, 1, 5, 3, 1, 0, 1, 9, 8, 8, 5, 4, 4, 7, 4, 5, 9, 4, 8, 9, 8, 8, 6, 3, 6, 6, 5, 6, 5, 5, 4, 9, 1, 5, 0, 9, 0, 5, 7, 5, 1, 8, 5, 6, 7, 5, 9, 5, 1, 4, 5, 3, 7, 2, 2, 4, 0, 8, 5, 0, 5, 5, 6, 3, 7, 3, 9, 3, 9, 6, 7, 2, 7, 7, 3, 9, 0, 4, 3, 5, 4, 2
OFFSET
3,4
LINKS
Eric Weisstein's World of Mathematics, Truncated Dodecahedron.
FORMULA
Equals 5*(sqrt(3) + 6*sqrt(5 + 2*sqrt(5))) = 5*(A002194 + 6*sqrt(5 + A010476)).
EXAMPLE
100.990760153101988544745948988636656554915090575...
MATHEMATICA
First[RealDigits[5*(Sqrt[3] + 6*Sqrt[5 + Sqrt[20]]), 10, 100]] (* or *)
First[RealDigits[PolyhedronData["TruncatedDodecahedron", "SurfaceArea"], 10, 100]]
CROSSREFS
Cf. A377695 (volume), A377696 (circumradius), A377697 (midradius), A377698 (Dehn invariant, negated).
Cf. A131595 (analogous for a regular dodecahedron).
Sequence in context: A199960 A257176 A324859 * A090655 A334480 A229758
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Nov 04 2024
STATUS
approved