

A324859


Decimal expansion of 0.1990753..., an inflection point of a Hurwitz zeta fixedpoint function.


3



1, 9, 9, 0, 7, 5, 3, 0, 3, 5, 4, 4, 7, 7, 2, 8, 5, 4, 9, 7, 1, 1, 3, 0, 0, 3, 5, 0, 7, 2, 2, 2, 8, 4, 2, 1, 6, 8, 8, 2, 8, 6, 6, 3, 2, 0, 1, 6, 3, 1, 5, 1, 0, 7, 6, 1, 0, 1, 4, 8, 1, 0, 1, 7, 7, 9, 7, 0, 6, 9, 3, 8, 2, 0, 3, 4, 0, 7, 2, 1, 0, 3, 6, 6, 9, 8, 1, 6, 4, 0, 4, 4, 7, 4, 9, 2, 4, 1, 9, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

For real values of the parameter "a" between 0 and 1, a real fixed point "s" of the iterated Hurwitz zeta function [s = zetahurwitz(s, a)] lies on a curve that passes through A069857 (0.295905...) and has a maximum tending toward 1. This curve has inflection points for a = 0.1990753... or 0.91964... . The fixed point "s" on this curve for the iteration "s = zetahurwitz(s, A324859)" is A324860 (0.5250984...).


LINKS

Table of n, a(n) for n=0..99.
Reikku Kulon, Plot of Hurwitz zeta fixedpoint curve for 0 < a < 2 and 1 < s < +1.


EXAMPLE

0.1990753035447728549711300350722284216882866320163...


PROG

(PARI) solve(t = 1/16, 1/2, derivnum(x = t, solve(v = 1, 1  x, v  zetahurwitz(v, x)), 2); )


CROSSREFS

Cf. A069857, A069995, A324860.
Sequence in context: A021838 A199960 A257176 * A090655 A334480 A229758
Adjacent sequences: A324856 A324857 A324858 * A324860 A324861 A324862


KEYWORD

nonn,cons


AUTHOR

Reikku Kulon, Mar 18 2019


STATUS

approved



