login
A377372
a(n) is the smallest prime p such that the Diophantine equation x^3 + y^3 + z^3 = p^3, where 0 < x <= y <= z has exactly n positive integer solutions.
0
2, 19, 41, 479, 1031, 1181, 577, 2999, 10711, 29033, 24919
OFFSET
0,1
EXAMPLE
a(3)=479, because 479^3 = 47^3 +350^3 + 406^3 = 109^3 + 293^3 + 437^3= 256^3 + 311^3 + 398^3 and no prime less than 479 has 3 solutions.
MATHEMATICA
a = Table[SelectFirst[Table[{p, Length@Select[PowersRepresentations[p^3, 3, 3], #[[1]] > 0 &]}, {p, Prime@Range@200}], #[[2]] == k &], {k, 0, 6}]
CROSSREFS
Sequence in context: A062587 A109946 A141067 * A296251 A307554 A031911
KEYWORD
nonn,more
AUTHOR
Zhining Yang, Dec 28 2024
STATUS
approved