login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377137
Array read by rows (blocks). Each row is a permutation of a block of consecutive numbers; the blocks are disjoint and every positive number belongs to some block. Row n contains 3n/2 elements if n is even, and (n+1)/2 elements if n is odd; ; see Comments.
3
1, 4, 2, 3, 6, 5, 12, 10, 8, 7, 9, 11, 15, 13, 14, 24, 22, 20, 18, 16, 17, 19, 21, 23, 28, 26, 25, 27, 40, 38, 36, 34, 32, 30, 29, 31, 33, 35, 37, 39, 45, 43, 41, 42, 44, 60, 58, 56, 54, 52, 50, 48, 46, 47, 49, 51, 53, 55, 57, 59, 66, 64, 62, 61, 63, 65, 84, 82, 80, 78, 76, 74, 72, 70, 68, 67, 69, 71, 73, 75, 77, 79, 81, 83, 91, 89, 87, 85, 86
OFFSET
1,2
COMMENTS
Row n has length A064455(n). The sequence A064455 is non-monotonic.
The array consists of two triangular arrays alternating row by row.
For odd n, row n consists of permutations of the integers from A001844((n-1)/2) to A265225(n-1). For even n, row n consists of permutations of the integers from A130883(n/2) to A265225(n-1).
These permutations are generated by the algorithm described A130517.
The sequence is an intra-block permutation of the positive integers.
FORMULA
Linear sequence:
a(n) = P(n) + B(L(n)-1), where L(n) = ceiling(x(n)), x(n) is largest real root of the equation B(x) - n = 0. B(n) = (n+1)*(2*n-(-1)^n+5)/4 = A265225(n). P(n) = A162630(n)/2.
Array T(n,k) (see Example):
T(n, k) = P(n, k) + (n^2 - n)/2 if n is even, T(n, k) = P(n, k) + (n^2 - 1)/2 if n is odd, T(n, k) = P(n, k) + A265225(n-1). P(n, k) = |2k - 3n / 2 - 2| if n is even and if 2k <= 3n / 2 + 1, P(n, k) = |2k - 3n / 2 - 1| if n is even and if 2k > 3n / 2 + 1. P(n, k) = |2k - (n + 1) / 2 - 2| if n is odd and if 2k <= (n + 1) / 2 + 1, P(n, k) = |2k - (n + 1) / 2 - 1| if n is odd and if 2k > (n + 1) / 2 + 1. There are several special cases: P(n, 1) = 3n/2 if n is even, P(n, 1) = (n+1)/2 if n is odd. P(2, 2) = 1. P(n, n) = n/2 - 1 if n is even, P(n, n) = (n-3)/2 if n is odd.
EXAMPLE
Array begins:
k = 1 2 3 4 5 6
n=1: 1;
n=2: 4, 2, 3;
n=3: 6, 5;
n=4: 12, 10, 8, 7, 9, 11;
The triangular arrays alternate by row: n=1 and n=3 comprise one, and n=2 and n=4 comprise the other.
Subtracting (n^2 - 1)/2 if n is odd from each term in row n produces a permutation of 1 .. (n+1)/2. Subtracting (n^2 - n)/2 if n is even from each term in row n produces a permutation of 1 .. 3n/2:
1,
3, 1, 2,
2, 1,
6, 4, 2, 1, 3, 5,
...
MATHEMATICA
a[n_]:=Module[{L, R, P, Result}, L=Ceiling[Max[x/.NSolve[x*(2*(x-1)-Cos[Pi*(x-1)]+5)-4*n==0, x, Reals]]]; R=n-If[EvenQ[L], (L^2-L)/2, (L^2-1)/2]; P[(L+1)*(2*L-(-1)^L+5)/4]=If[EvenQ[L], 3L/2, (L+1)/2]; P[3]=2; P= Abs[2*R-If[EvenQ[L], 3L/2, (L+1)/2]-If[2*R<=If[EvenQ[L], 3L/2, (L+1)/2]+1, 2, 1]]; Res=P+If[EvenQ[L], (L^2-L)/2, (L^2-1)/2]; Result=Res; Result] Nmax= 12; Table[a[n], {n, 1, Nmax}]
KEYWORD
nonn,tabf
AUTHOR
Boris Putievskiy, Oct 17 2024
STATUS
approved