login
A377025
Squares and cubes that are not 6th powers.
4
4, 8, 9, 16, 25, 27, 36, 49, 81, 100, 121, 125, 144, 169, 196, 216, 225, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849, 1936, 2025
OFFSET
1,1
COMMENTS
Squares and cubes that cannot be written as both a square and a cube.
A125643 minus the repeated terms.
MATHEMATICA
lim=2025; Select[Union[Range[Floor[lim^(1/2)]]^2, Range[Floor[lim^(1/3)]]^3], !IntegerQ[#^(1/6)]&] (* James C. McMahon, Oct 16 2024 *)
PROG
(Python)
from math import isqrt
from sympy import integer_nthroot
def A377025(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x+(integer_nthroot(x, 6)[0]<<1)-integer_nthroot(x, 3)[0]-isqrt(x)
return bisection(f, n, n)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Chai Wah Wu, Oct 13 2024
STATUS
approved