OFFSET
1,3
COMMENTS
The constants F(1) = A213080, F(2), ... occur in the context of asymptotic constants related to asymptotic products of factorials as well as of binomial and multinomial coefficients. Moreover, the sequence (F(k))_{k >= 1} is strictly decreasing with limit 1. For example, for k >= 1 the asymptotic product Prod_{v >= 1} (k*v)! has the asymptotic constant F(k)*A^k*(2*Pi)^(1/4), where A = A074962 denotes the Glaisher-Kinkelin constant. Let gamma = A001620 be Euler's constant and Gamma(x) be the gamma function.
For k >= 1, the constants F(k) can be computed by an explicit formula and a divergent series expansion, as follows. We have log(F(k)) = (1/(12*k))*(1-log(k)) + (k/4)*log(2*Pi) - ((k^2+1)/k)*log(A) - Sum_{v=1..k-1} (v/k)*log(Gamma(v/k)) = gamma/(12*k) - t*zeta(3)/(360*k^3) with some t in (0,1), respectively.
It follows that log(F(2)) = 1/24 + log(2*Pi)/4 + (5/24)*log(2) - (5/2)*log(A) = gamma/24 - t*zeta(3)/2880 with some t in (0,1), and so F(2) lies in the interval (1.023914..., 1.024342...) (see Kellner 2009 and 2024).
LINKS
Bernd C. Kellner, Table of n, a(n) for n = 1..10000
Bernd C. Kellner, On asymptotic constants related to products of Bernoulli numbers and factorials, Integers 9 (2009), Article #A08, 83-106; alternative link; arXiv:0604505 [math.NT], 2006.
Bernd C. Kellner, Asymptotic products of binomial and multinomial coefficients revisited, Integers 24 (2024), Article #A59, 10 pp.; arXiv:2312.11369 [math.CO], 2023.
FORMULA
Equals exp(1/24)*(2*Pi)^(1/4)*2^(5/24)/A^(5/2) where A = A074962.
Equals exp(-1/6+(5/2)*zeta'(-1))*(2*Pi)^(1/4)*2^(5/24).
EXAMPLE
1.02393741163711840157795078258621780080376098043644005129469909513476924124007...
MAPLE
exp(-1/6+5/2*Zeta(1, -1))*(2*Pi)^(1/4)*2^(5/24); evalf(%, 100);
MATHEMATICA
RealDigits[Exp[1/24] (2 Pi)^(1/4) 2^(5/24) / Glaisher^(5/2), 10, 100][[1]]
PROG
(Sage)
import mpmath
mpmath.mp.pretty = True; mpmath.mp.dps = 100
mpmath.exp(-1/6+5/2*mpmath.zeta(-1, 1, 1))*(2*pi)^(1/4)*2^(5/24)
(PARI)
default(realprecision, 100);
exp(-1/6+5/2*zeta'(-1))*(2*Pi)^(1/4)*2^(5/24)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Bernd C. Kellner, Oct 13 2024
STATUS
approved