login
A376897
Positive numbers k such that all the digits in the octal expansion of k^2 are distinct.
2
1, 2, 4, 5, 7, 13, 14, 15, 18, 20, 21, 28, 30, 37, 39, 43, 44, 45, 53, 55, 63, 78, 84, 103, 110, 113, 117, 127, 149, 155, 156, 161, 162, 172, 173, 174, 175, 179, 220, 236, 242, 270, 286, 293, 299, 301, 340, 343, 350, 356, 361, 395, 407, 412, 425, 439, 461, 475, 499, 674, 819, 1001, 1211, 1230, 1244, 1323, 1764, 2450, 2751, 3213
OFFSET
1,2
COMMENTS
There are no terms >= 2^12 because 2^24-1 is the largest eight-digit octal number.
EXAMPLE
110 is in the sequence because 110^2 = 12100 = 27504_8 and no octal digit occurs more than once.
MATHEMATICA
Select[Range[2^12], DuplicateFreeQ[IntegerDigits[#^2, 8]] &] (* Michael De Vlieger, Oct 12 2024 *)
PROG
(Python)
for k in range(1, 2**12):
octal = format(k**2, "o")
if len(octal) == len(set(octal)): print(k, end=", ")
CROSSREFS
KEYWORD
base,fini,full,nonn
AUTHOR
Kalle Siukola, Oct 08 2024
STATUS
approved