login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376459
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n, n-k).
1
1, -1, -17, 143, 751, -20251, 30871, 2584847, -21586193, -251907751, 5176221733, 5498864117, -913327142441, 5540080670669, 120825094592983, -1860921180719857, -8346832617144593, 401702184476719649, -1403893237226212151, -64680833271083055607, 743195619082337134501, 6754996433001423371159, -192371016736634220839987, 139058974519768723621493, 36163089652079749214625751, -298797649039016749340832751
OFFSET
0,3
COMMENTS
Compare with the following identity relating the sequence of Apéry numbers to the table of crystal ball sequences for the A_n lattices: A005259(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n, k), which can be verified by using the MulZeil procedure in Zeilberger's MultiZeilberger Maple package to find a recurrence for the double sum on the right-hand side of the identity.
The sequence of Apéry numbers A005259 satisfies the pair of supercongruences
1) A005259(n*p^r) == A005259(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r
and
2) A005259(n*p^r - 1) == A005259(n*p^(r-1) - 1) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r.
We conjecture that the present sequence satisfies the same pair of supercongruences. Some examples are given below.
FORMULA
P-recursive: n^3*(n - 1)*(946*n^2 - 3053*n + 2475)*a(n) = -2*(n - 1)*(3784*n^5 - 17888*n^4 + 31787*n^3 - 26726*n^2 + 11051*n - 1824)*a(n-1) - 2*(104060*n^6 - 752070*n^5 + 2212238*n^4 - 3374927*n^3 + 2802671*n^2 - 1196821*n + 205920)*a(n-2) - 2*(n - 2)^3*(2*n - 3)*(946*n^2 - 1161*n + 368)*a(n-3) with a(0) = 1, a(1) = -1 and a(2) = -17.
EXAMPLE
Examples of supercongruences:
(1a) a(11) - a(1) = 5498864117 - (-1) = 2*(3^3)*(11^3)*76507 == 0 (mod 11^3);
(1b) a(10) - a(0) = 5176221733 - 1 = (2^2)*(3^5)*(11^3)*4001 == 0 mod 11^3).
(2a) a(5^2) - a(5) = -298797649039016749340832751 - (-20251) = - (2^2)*3*(5^6)*
(11^2)*47*89*1683049*1870707593 == 0 (mod 5^6);
(2b) a(5^2 - 1) - a(5 - 1) = 36163089652079749214625751 - 751 = (2^3)*3*(5^6)*7*11*
17*101*729412564491671 == 0 (mod 5^6).
MAPLE
A108625(n, k) := add(binomial(n, i)^2 * binomial(n+k-i, k-i), i = 0..k):
a(n) := add((-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n, n-k), k = 0..n):
seq(a(n), n = 0..25);
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Peter Bala, Sep 24 2024
STATUS
approved