login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376458
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n-1, n-k).
9
1, 1, -7, 1, 569, -3749, -45151, 806737, 1052729, -130060889, 740060243, 16076432923, -238772815711, -1050791121197, 49401000432497, -171944622257999, -7658491447803847, 87632552103603679, 768037618172427023, -22023427875902878553, 19183786570616924819, 4030690809877385503081, -33792039667279104716677, -520860578851790657166869
OFFSET
0,3
COMMENTS
Compare with the following identity relating the sequence of Apéry numbers to the table of crystal ball sequences for the A_n lattices: A005259(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n, k), which can be verified by using the MulZeil procedure in Zeilberger's MultiZeilberger Maple package to find a recurrence for the double sum on the right-hand side of the identity.
The sequence of Apéry numbers A005259 satisfies the supercongruences A005259(n*p^r) == A005259(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r.
We conjecture that the present sequence satisfies same supercongruences and in addition satisfies the stronger congruences a(p) == a(1) (mod p^5) for all primes p >= 7 (checked up to p = 199) and a(p^r) == a(p^(r-1)) (mod p^(3*r+3)) for all primes p >= 5 and integers r >= 2.
FORMULA
a(n) = Sum_{0 <= i <= k <= n} (-1)^k * binomial(n, k) * binomial(2*n-k, n-k) * binomial(n-1, i)^2 * binomial(n+k-i-1, k-i).
P-recursive: (2*n - 3)*n^3*(n - 1)^2*(473*n^5 - 4988*n^4 + 20888*n^3 - 43462*n^2 + 45019*n - 18634)*a(n) = - 2*(n - 1)^2*(3784*n^9 - 51256*n^8 + 303801*n^7 - 1037327*n^6 + 2252744*n^5 - 3220636*n^4 + 3006247*n^3 - 1739455*n^2 + 555714*n - 75024)*a(n-1) - 2*(n - 2)*(2*n - 1)*(52030*n^9 - 756800*n^8 + 4787337*n^7 - 17271387*n^6 + 39143817*n^5 - 57806236*n^4 + 55708921*n^3 - 33926177*n^2 + 11955879*n - 1890360)*a(n-2) - 2*(n - 2)*(n - 3)^3*(2*n - 1)*(2*n - 3)*(473*n^5 - 2623*n^4 + 5666*n^3 - 5996*n^2 + 3172*n - 704)*a(n-3) with a(0) = 1, a(1) = -1 and a(2) = 7.
EXAMPLE
Examples of supercongruences:
a(7) - a(1) = 806737 - 1 = (2^4)*3*(7^5) == 0 (mod 7^5).
a(11) - a(1) = 16076432923 - 1 = 2*3*(11^5)*127*131 == 0 (mod 11^5).
a(5^2) - a(5) = 22511570786292886382808751 - (-3749) = (2^2)*(3^2)*(5^9)*67*97*
7741*49223*129289 == 0 (mod 5^9).
MAPLE
A108625(n, k) := add(binomial(n, i)^2 * binomial(n+k-i, k-i), i = 0..k):
a(n) := add((-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n-1, n-k), k = 0..n):
seq(a(n), n = 0..25);
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Peter Bala, Sep 23 2024
STATUS
approved